...
首页> 外文期刊>The Astrophysical journal >Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo
【24h】

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo

机译:银河中帕克不稳定性触发的磁重连接:二维数值磁流体动力学模拟及其在银河晕中X射线气体成因的应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We propose the Galactic flare model for the origin of the X-ray gas in the Galactic halo. For this purpose, we examine the magnetic reconnection triggered by Parker instability (magnetic buoyancy instability), by performing the two-dimensional resistive numerical magnetohydrodynamic simulations. As a result of numerical simulations, the system evolves through the following phases. Parker instability occurs in the Galactic disk. In the nonlinear phase of Parker instability, the magnetic loop inflates from the Galactic disk into the Galactic halo and collides with the antiparallel magnetic field, so that the current sheets are created in the Galactic halo. The tearing instability occurs and creates the plasmoids (magnetic islands). Just after the plasmoid ejection, further current sheet thinning occurs in the sheet, and the anomalous resistivity sets in. Petschek reconnection starts and heats the gas quickly in the Galactic halo. It also creates the slow and fast shock regions in the Galactic halo. The magnetic field (B ~ 3 μG), for example, can heat the gas (n ~ 10-3 cm-3) to a temperature of ~106 K via the reconnection in the Galactic halo. The gas is accelerated to Alfvén velocity (~300 km s-1). Such high-velocity jets are the evidence of the Galactic flare model we present in this paper, if the Doppler shift of the bipolar jet is detected in the Galactic halo.
机译:我们为银河光晕中X射线气体的起源提出了银河耀斑模型。为此,我们通过执行二维电阻数值磁流体动力学模拟,研究了由帕克不稳定性(磁浮力不稳定性)触发的磁重连接。数值模拟的结果是,系统经历了以下几个阶段。帕克不稳定性发生在银河系磁盘中。在帕克不稳定性的非线性阶段,磁环从银河系盘膨胀到银河系光环中,并与反平行磁场发生碰撞,从而在银河系光环中产生了电流层。发生撕裂不稳定性,并产生等离子体(磁性岛)。刚发出等离子体之后,当前的薄层会在薄层中发生进一步的变薄,并且异常电阻率会升高。Petschek重新连接开始并在Galactic晕圈中快速加热气体。它还会在银河系光环中创建慢速和快速冲击区域。例如,磁场(B〜3μG)可以通过重新连接银河系光环将气体(n〜10-3 cm-3)加热到〜106K。气体被加速到Alfvén速度(〜300 km s-1)。如果在银河晕中检测到双极射流的多普勒频移,那么这种高速射流就是我们在本文中提出的银河耀斑模型的证据。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号