首页> 外文期刊>The Astrophysical journal >The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up
【24h】

The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up

机译:CNO同位素:红色巨人的深层循环以及第一次和第二次挖泥

获取原文
获取外文期刊封面目录资料

摘要

It is demonstrated that deep circulation mixing below the base of the standard convective envelope, and the consequent "cool bottom processing" (CBP) of the CNO isotopes, can reproduce the trend with stellar mass of the 12C/13C observations in low-mass red giants. (This trend is opposite to what is expected from standard first dredge-up.) Our models assume that extra mixing always reaches to the same distance in temperature from the H-burning shell and that CBP begins when the H-burning shell erases the molecular weight discontinuity ("μ-barrier") established by first dredge-up. For Population I stars, none of the other CNO isotopes except 15N are expected to be altered by CBP. (If 18O depletion occurs on the asymptotic giant branch [AGB], as some observations suggest, it would require that extra mixing reach closer to the H-burning shell on the AGB than on the red giant branch [RGB]—and should also result in a much lower 12C/13C ratio than is observed in the relevant AGB stars.) CBP increases dramatically as one reduces the stellar mass or metallicity—roughly as M-2 on the RGB, because of the longer RGB of low-mass stars, and roughly as Z-1, because of the higher H-shell burning temperatures of low-metallicity stars. In low-mass Population II stars, all the CNO isotopes are expected to be significantly altered by CBP. Field Population II stars exhibit RGB abundances consistent with the predictions of our CBP models that have been normalized to reproduce the Population I RGB abundances. On the other hand, globular cluster stars are observed to encounter much more extensive processing; additionally, CBP is observed to start near the base of the globular cluster RGB (overcoming any "μ-barrier"). For the CNO isotopes 12C, 13C, 14N, 16O, 17O, and 18O, we also present self-consistent calculations of the consequences of both first and second dredge-up, i.e., of standard convection during the RGB and AGB stages, over a wide range of stellar masses (0.8-9 M☉) and metallicities (Z=0.02-0.0001). We demonstrate that the common low- and intermediate-mass stars are a prime source of 13C, 14N, and 17O in the universe. The light elements (3He, 4He, 7Li, 9Be, 10B, and 11B) are discussed in a companion paper.
机译:结果表明,在标准对流包层底部以下的深循环混合以及随之而来的CNO同位素的“冷底部处理”(CBP)可以再现低质量红中具有12C / 13C观测值的恒星质量的趋势。巨人。 (这种趋势与标准第一次挖泥所预期的相反。)我们的模型假设,额外的混合温度始终与H燃烧壳达到相同的距离,并且CBP在H燃烧壳擦除分子时开始第一次挖泥建立的重量不连续性(“μ障碍”)。对于I类恒星,预期CBP会改变15N以外的其他CNO同位素。 (如一些观察结果所示,如果18O耗尽在渐近巨型分支[AGB]上发生,则将需要额外的混合比在红色巨型分支[RGB]上更接近AGB上的H燃烧壳-并且还应导致与相关AGB恒星相比,它的12C / 13C比率要低得多。)随着恒星质量或金属度的降低,CBP急剧增加(大致相当于RGB上的M-2),这是由于低质量恒星的RGB更长,由于低金属星的H壳燃烧温度较高,因此大致与Z-1相同。在低质量II类恒星中,预计所有CNO同位素都会被CBP显着改变。野外种群II恒星显示RGB丰度,与我们的CBP模型的预测一致,这些预测已规范化以再现种群I RGB丰度。另一方面,观察到球状星团遇到更广泛的处理。另外,观察到CBP开始于球状簇RGB的底部附近(克服了任何“μ壁垒”)。对于CNO同位素12C,13C,14N,16O,17O和18O,我们还提出了对第一和第二挖泥的后果(即在RGB和AGB阶段在标准对流过程中)的自洽计算。广泛的恒星质量(0.8-9M☉)和金属性(Z = 0.02-0.0001)。我们证明了常见的低质量和中等质量的恒星是宇宙中13C,14N和17O的主要来源。随书中讨论了轻元素(3He,4He,7Li,9Be,10B和11B)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号