...
首页> 外文期刊>The Astrophysical journal >HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole
【24h】

HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole

机译:HST STIS光谱的M31的三核:两个嵌套圆盘在Keplerian旋转超大质量黑洞周围。

获取原文

摘要

We present Hubble Space Telescope (HST) spectroscopy of the nucleus of M31 obtained with the Space Telescope Imaging Spectrograph (STIS). Spectra that include the Ca II infrared triplet (λ 8500 ?) see only the red giant stars in the double brightness peaks P1 and P2. In contrast, spectra taken at λ 3600-5100 ? are sensitive to the tiny blue nucleus embedded in P2, the lower surface brightness nucleus of the galaxy. P2 has a K-type spectrum, but we find that the blue nucleus has an A-type spectrum: it shows strong Balmer absorption lines. Hence, the blue nucleus is blue not because of AGN light but rather because it is dominated by hot stars. We show that the spectrum is well described by A0 giant stars, A0 dwarf stars, or a 200 Myr old, single-burst stellar population. White dwarfs, in contrast, cannot fit the blue nucleus spectrum. Given the small likelihood for stellar collisions, recent star formation appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity dispersion, the blue nucleus is so different from P1 and P2 that we call it P3 and refer to the nucleus of M31 as triple. Because P2 and P3 have very different spectra, we can make a clean decomposition of the red and blue stars and hence measure the light distribution and kinematics of each uncontaminated by the other. The line-of-sight velocity distributions of the red stars near P2 strengthen the support for Tremaine's eccentric disk model. Their wings indicate the presence of stars with velocities of up to 1000 km s-1 on the anti-P1 side of P2. The kinematics of P3 are consistent with a circular stellar disk in Keplerian rotation around a supermassive black hole. If the P3 disk is perfectly thin, then the inclination angle i 55° is identical within the errors to the inclination of the eccentric disk models for P1+P2 by Peiris & Tremaine and by Salow & Statler. Both disks rotate in the same sense and are almost coplanar. The observed velocity dispersion of P3 is largely caused by blurred rotation and has a maximum value of σ = 1183 ± 201 km s-1. This is much larger than the dispersion σ 250 km s-1 of the red stars along the same line of sight and is the largest integrated velocity dispersion observed in any galaxy. The rotation curve of P3 is symmetric around its center. It reaches an observed velocity of V = 618 ± 81 km s-1 at radius 005 = 0.19 pc, where the observed velocity dispersion is σ = 674 ± 95 km s-1. The corresponding circular rotation velocity at this radius is ~1700 km s-1. We therefore confirm earlier suggestions that the central dark object interpreted as a supermassive black hole is located in P3. Thin-disk and Schwarzschild models with intrinsic axial ratios b/a 0.26 corresponding to inclinations between 55° and 58° match the P3 observations very well. Among these models, the best fit and the lowest black hole mass are obtained for a thin-disk model with M? = 1.4 × 108 M☉. Allowing P3 to have some intrinsic thickness and considering possible systematic errors, the 1 σ confidence range becomes (1.1-2.3) × 108 M☉. The black hole mass determined from P3 is independent of but consistent with Peiris & Tremaine's mass estimate based on the eccentric disk model for P1+P2. It is ~2 times larger than the prediction by the correlation between M? and bulge velocity dispersion σbulge. Taken together with other reliable black hole mass determinations in nearby galaxies, notably the Milky Way and M32, this strengthens the evidence that the M?-σbulge relation has significant intrinsic scatter, at least at low black hole masses. We show that any dark star cluster alternative to a black hole must have a half-mass radius 003 = 0.11 pc in order to match the observations. Based on this, M31 becomes the third galaxy (after NGC 4258 and our Galaxy) in which clusters of brown dwarf stars or dead stars can be excluded on astrophysical grounds.
机译:我们目前用太空望远镜成像光谱仪(STIS)获得的M31原子核的哈勃太空望远镜(HST)光谱。包含Ca II红外三重态(λ8500?)的光谱在双亮度峰P1和P2中仅看到红色巨星。相反,在λ3600-5100?处获得的光谱。对嵌入P2的微小蓝色核(银河系的较低表面亮度核)敏感。 P2具有K型光谱,但我们发现蓝核具有A型光谱:它显示出强大的Balmer吸收线。因此,蓝核之所以是蓝色,不是因为AGN的光,而是因为它是由热恒星控制的。我们显示,A0巨星,A0矮星或200 Myr的单爆发恒星群可以很好地描述光谱。相比之下,白矮星无法适应蓝核光谱。考虑到恒星碰撞的可能性很小,最近的恒星形成似乎是蓝色核最合理的起源。在恒星的种群,大小和速度色散中,蓝色核与P1和P2如此不同,我们将其称为P3,并将M31的核称为三重核。因为P2和P3具有非常不同的光谱,所以我们可以对红色和蓝色恒星进行清晰的分解,从而测量彼此不受污染的光的分布和运动学。 P2附近的红星的视线速度分布加强了对Tremaine偏心盘模型的支持。它们的翅膀表明在P2的反P1侧存在速度高达1000 km s-1的恒星。 P3的运动学与绕超大质量黑洞的Keplerian旋转中的圆形恒星盘一致。如果P3圆盘非常薄,则倾斜角度i 55°在误差范围内与Peiris&Tremaine和Salow&Statler对于P1 + P2的偏心圆盘模型的倾斜度相同。两个磁盘以相同的方向旋转,并且几乎共面。观测到的P3的速度色散主要是由旋转模糊造成的,最大值为σ= 1183±201 km s-1。这比沿同一视线的红星的色散σ250 km s-1大得多,并且是在任何星系中观察到的最大积分速度色散。 P3的旋转曲线围绕其中心对称。在半径005 = 0.19 pc处,其达到的观测速度为V = 618±81 km s-1,其中观测到的速度分散为σ= 674±95 km s-1。在此半径处相应的圆形旋转速度为〜1700 km s-1。因此,我们确认了先前的建议,即被解释为超大质量黑洞的中央暗物位于P3中。薄盘和Schwarzschild模型的固有轴向比b / a为0.26,对应于55°和58°之间的倾斜度,与P3观测值非常匹配。在这些模型中,对于带有M?的薄盘模型,可获得最佳拟合和最低黑洞质量。 = 1.4×108M☉。考虑到可能的系统误差,允许P3具有一定的固有厚度,则1σ置信范围为(1.1-2.3)×108M☉。由P3确定的黑洞质量与Peiris&Tremaine基于P1 + P2的偏心盘模型的质量估计无关,但与该估计一致。它是M?之间的相关性的约2倍。和膨胀速度弥散σbulge。再加上附近银河系中其他可靠的黑洞质量测定,尤其是银河系和M32,这进一步证明了至少在低黑洞质量下Mα-σ凸起关系具有明显的固有散射。我们证明,替代黑洞的任何暗星团必须具有半质量半径003 = 0.11 pc,以匹配观测值。基于此,M31成为第三个星系(仅次于NGC 4258和我们的银河系),在该星系中,天文学家可以排除棕色矮星或死星的团簇。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号