首页> 外文期刊>The Astrophysical journal >Molecular Evolution in Collapsing Prestellar Cores. III. Contraction of a Bonnor-Ebert Sphere
【24h】

Molecular Evolution in Collapsing Prestellar Cores. III. Contraction of a Bonnor-Ebert Sphere

机译:坍缩的恒星核心中的分子进化。三, Bonnor-Ebert球面的收缩

获取原文
获取外文期刊封面目录资料

摘要

The gravitational collapse of a spherical cloud core is investigated by numerical calculations. The initial conditions of the core lie close to the critical Bonnor-Ebert sphere with a central density of ~104 cm-3 in one model (α = 1.1), while gravity overwhelms pressure in the other (α = 4.0), where α is the internal gravity-to-pressure ratio. The α = 1.1 model shows reasonable agreement with the observed velocity field in prestellar cores. Molecular distributions in cores are calculated by solving a chemical reaction network that includes both gas-phase and grain-surface reactions. When the central density of the core reaches 105 cm-3, carbon-bearing species are significantly depleted in the central region of the α = 1.1 model, while the depletion is only marginal in the other model. The two different approaches encompass the observed variations of molecular distributions in different prestellar cores, suggesting that molecular distributions can be probes of contraction or accumulation timescales of cores. The central enhancement of the NH3/N2H+ ratio, which is observed in some prestellar cores, can be reproduced under certain conditions by adopting recently measured branching fractions for N2H+ recombination. Various molecular species, such as CH3OH and CO2, are produced by grain-surface reactions. The ice composition depends sensitively on the assumed temperature. Multideuterated species are included in our most recent gas-grain chemical network. The deuterated isotopomers of H are useful as probes of the central regions of evolved cores, in which gas-phase species with heavy elements are strongly depleted. At 10 K, our model can reproduce the observed abundance ratio of ND3/NH3 but underestimates the isotopic ratios of deuterated to normal methanol.
机译:通过数值计算研究了球形云芯的重力塌陷。在一个模型中,核心的初始条件接近临界Bonnor-Ebert球,中心密度约为104 cm-3(α= 1.1),而在另一个模型中,重力使压力压倒(α= 4.0),其中α为内部重力压力比。 α= 1.1模型显示出与星前岩心中观测到的速度场具有合理的一致性。核心中的分子分布是通过求解包括气相反应和晶粒表面反应的化学反应网络来计算的。当岩心的中心密度达到105 cm-3时,α= 1.1模型的中心区域中的含碳物质显着减少,而在其他模型中,这种消耗仅是微不足道的。两种不同的方法包括观察到的不同星前核心中分子分布的变化,这表明分子分布可以作为核心收缩或累积时标的探针。在某些恒星核心中观察到的NH3 / N2H +比值的中心增强可以在某些条件下通过采用最近测得的N2H +重组支化分数来重现。晶粒表面反应产生各种分子物质,例如CH3OH和CO2。冰的成分敏感地取决于假定的温度。我们最近的气粒化学网络中包括多氘核物种。 H的氘代同位素异构体可用作演化核中心区域的探针,其中重元素的气相物质被严重耗尽。在10 K下,我们的模型可以重现观察到的ND3 / NH3的丰度比,但低估了氘代甲醇与正常甲醇的同位素比。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号