...
首页> 外文期刊>The Astrophysical journal >The Distribution of Nearby Stars in Velocity Space Inferred from Hipparcos Data
【24h】

The Distribution of Nearby Stars in Velocity Space Inferred from Hipparcos Data

机译:根据Hipparcos数据推算出的速度空间附近恒星的分布

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The velocity distribution f(v) of nearby stars is estimated, via a maximum likelihood algorithm, from the positions and tangential velocities of a kinematically unbiased sample of 14,369 stars observed by the Hipparcos satellite. The distribution f shows rich structure in the radial and azimuthal motions, vR and v, but not in the vertical velocity, vz: there are four prominent and many smaller maxima, many of which correspond to well-known moving groups. While samples of early-type stars are dominated by these maxima, also up to about a quarter of red main-sequence stars are associated with them. These moving groups are responsible for the vertex deviation measured even for samples of late-type stars; they appear more frequently for ever redder samples, and as a whole they follow an asymmetric drift relation, in the sense that those only present in red samples predominantly have large |vR| and lag in v with respect to the local standard of rest (LSR). The question arises, how did these old moving groups get on their eccentric orbits? A plausible mechanism known from solar system dynamics that is able to manage a shift in orbit space is sketched. This mechanism involves locking into an orbital resonance; in this respect is intriguing that Oort's constants, as derived from Hipparcos data, imply a frequency ratio between azimuthal and radial motion of exactly Ω:κ = 3:4. Apart from these moving groups, there is a smooth background distribution, akin to Schwarzschild's ellipsoidal model, with axis ratios σR:σ:σz ≈ 1:0.6:0.35. The contours are aligned with the vR-direction, but not with respect to the v- and vz-axes: the mean vz increases for stars rotating faster than the LSR. This effect can be explained by the stellar warp of the Galactic disk. If this explanation is correct, the warp's inner edge must not be within the solar circle, while its pattern rotates with frequency 13 km s-1 kpc-1 retrograde with respect to the stellar orbits.
机译:通过最大似然算法,从Hipparcos卫星观测到的14369颗恒星的运动学无偏样本的位置和切向速度,估计附近恒星的速度分布f(v)。分布f在径向和方位角运动vR和v中显示出丰富的结构,但在垂直速度vz中却没有:有四个显着且更小的最大值,其中许多对应于众所周知的运动组。尽管早期型恒星的样本受这些最大值的支配,但最多也有约四分之一的红色主序恒星与它们相关。这些移动组甚至对后期型恒星的样本也负责测得的顶点偏差。它们在出现越红的样本时会更频繁地出现,并且总体上它们遵循不对称的漂移关系,即仅存在于红色样本中的样本主要具有较大的| vR |。相对于当地的休息标准(LSR)滞后于v。问题出现了,这些古老的运动团是如何进入偏心轨道的?从太阳系动力学已知的一种可行的机制已被勾勒,该机制能够控制轨道空间的移动。该机制涉及锁定在轨道共振中。从Hipparcos数据中得出的Oort常数暗示了方位角运动与径向运动之间的频率比恰好为Ω:κ= 3:4。除了这些移动的组外,还存在类似于Schwarzschild椭圆形模型的平滑背景分布,轴比σR:σ:σz≈1:0.6:0.35。等高线与vR方向对齐,但不与v轴和vz轴对齐:相对于LSR旋转得更快的恒星,平均vz增大。这种效应可以通过银河系盘的恒星翘曲来解释。如果这个解释是正确的,那么经线的内边缘一定不能在太阳圆内,而其模式相对于恒星轨道以13 km s-1 kpc-1逆行的频率旋转。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号