首页> 外文期刊>The Astrophysical journal >The History of Galaxies and Galaxy Number Counts
【24h】

The History of Galaxies and Galaxy Number Counts

机译:星系和银河数计数的历史

获取原文
获取外文期刊封面目录资料

摘要

A simple quantitative model is presented for the history of galaxies to explain galaxy number counts, redshift distributions, and some other related observations. We first infer that irregular galaxies and the disks of spiral galaxies are young, probably formed at z ≈ 0.5-2, from a simultaneous consideration of colors and gas content under a moderate assumption on the star formation history. Assuming that elliptical galaxies and bulges of spiral galaxies, both called spheroids in the discussion, had formed early in the universe, the resulting scenario is that spiral galaxies formed as intergalactic gas accreting onto preexisting bulges mostly at z ≈ 1-2; irregular galaxies as seen today formed by aggregation of clouds at z ≈ 0.5-1.5. Taking the formation epochs thus estimated into account, we construct a model for the history of galaxies employing a stellar population synthesis model. We assume that the number of galaxies does not change, except that some of them (irregular galaxies) were newly born, and use a morphology-dependent local luminosity function to constrain the number of galaxies. We represent the galaxies by E/S0, Sab, Sc, and Irr; low-luminosity dwarfs or any objects unobservable today do not play a role in our considerations. In our model, spheroids follow passive evolution and the luminosity of spiral galaxies evolves only very slowly for a wide redshift interval due to a counterbalance between fading stars and new star formation from the gas replenished from intergalactic space. Irregular galaxies evolve moderately fast for z 1. The predictions of the model are compared with the observation of galaxy number counts and redshift distributions for the B, I, and K color bands. We show that K-band observations are largely controlled by spheroids, which make them particularly suitable to study cosmology. We argue that Ω = 1 models are disfavored, unless the basic assumptions of the present model are abandoned. The K-band observations reach quite high redshift: for instance, observations at K = 23 mag may explore the formation epoch, which could be as high as z 5. On the other hand, galaxies observed in the B band are dominated by disks and irregular galaxies, spheroids making a very small contribution. It is shown that young irregular galaxies cause the steep slope of the counts. The fraction of irregular galaxies increases with decreasing brightness: at B = 24 mag, they contribute as much as spiral galaxies. Thus, "the faint blue galaxy problem" is solved by invoking young galaxies. This interpretation is corroborated by a comparison of our prediction with the morphologically classified galaxy counts in the I band. We do not invoke sporadic star bursting: star formation takes place steadily as does today, but galaxies (especially irregular galaxies) are gaseous at higher redshift, and hence star formation is much more active than today. Consistency is also shown with the constraint on the luminosity evolution from a Mg II quasar absorption-line-selected sample. We estimate that two-thirds of the baryons in stars are stored in spheroids and one-third in disks, only less than 10% being in irregular galaxies. The amount of baryons in disk stars is increasing, since they form to Ωb ~ 0.001, which just offsets the decrease of neutral gas toward the present epoch, as inferred from quasar absorption-line surveys.
机译:为星系的历史提供了一个简单的定量模型,以解释星系数计数,红移分布以及其他一些相关的观察结果。我们首先推断出不规则星系和螺旋星系的盘很年轻,大概是在z≈0.5-2时形成的,这是根据对恒星形成历史的适度假设同时考虑颜色和气体含量而得出的。假设椭圆星系和螺旋星系的凸起在宇宙的早期都形成了,在讨论中都被称为球体,因此产生的结果是,螺旋星系是作为星系间气体而形成的,它们主要在z≈1-2时吸附在已存在的凸起上。今天看到的不规则星系是由z≈0.5-1.5的云团聚形成的。考虑到如此估计的形成时期,我们使用恒星种群合成模型构建了一个星系历史模型。我们假设除了一些星系(不规则星系)是新生的以外,星系的数量没有改变,并使用依赖于形态学的局部光度函数来限制星系的数量。我们用E / S0,Sab,Sc和Irr表示星系。低亮度矮人或今天无法观察到的任何物体在我们的考虑中都不起作用。在我们的模型中,由于衰落的恒星与来自星际空间补充的气体形成的新恒星之间的平衡,球状体跟随被动演化,并且螺旋星系的光度仅在很宽的红移间隔内非常缓慢地演化。不规则星系在z <1时适度快速演化。将模型的预测与B,I和K色带的星系数计数和红移分布的观察结果进行比较。我们显示,K波段的观测结果很大程度上受球体控制,这使它们特别适合研究宇宙学。我们认为Ω= 1模型是不利的,除非放弃了该模型的基本假设。 K波段的观测值达到了很高的红移:例如,在K = 23 mag处的观测可能探索了形成历元,该时期可能高达z>5。另一方面,在B波段观测到的星系主要由圆盘控制。以及不规则的星系,球体的贡献很小。结果表明,年轻的不规则星系会引起计数的陡峭斜率。不规则星系的比例随亮度降低而增加:在B = 24 mag时,它们的贡献与旋涡星系一样多。因此,通过调用年轻的星系来解决“微弱的蓝色星系问题”。通过将我们的预测与I波段中形态分类的星系计数进行比较,证实了这种解释。我们不会调用零星的星际爆发:恒星形成与今天一样稳定地发生,但是星系(尤其是不规则星系)在较高的红移下是气态的,因此恒星形成比今天活跃得多。还显示了一致性,并限制了从Mg II类星体吸收线选择的样品的发光度演变。我们估计,恒星中三分之二的重子存储在椭球中,三分之一存储在圆盘中,只有不到10%的重子存储在不规则星系中。盘状恒星中的重子数量不断增加,因为它们的形成量为Ωb〜0.001,这恰好抵消了从类星体吸收线调查得出的中性气体向当前纪元的减少。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号