...
首页> 外文期刊>The Astrophysical journal >Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. II. Formation of Atomic and Molecular Hydrogen in Frozen Organic Molecules
【24h】

Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. II. Formation of Atomic and Molecular Hydrogen in Frozen Organic Molecules

机译:宇宙射线粒子与星际冰相互作用的理论和实验室研究。二。冷冻有机分子中原子氢和分子氢的形成

获取原文
           

摘要

Methane ices are irradiated at 4 × 10-10 mbar at temperatures between 10 and 50 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate the formation of atomic as well as molecular hydrogen via interaction of Galactic cosmic-ray particles with extraterrestrial organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our data reveal that more than 99% of the energy is transferred via inelastic interactions to the electronic system of the target to form electronically excited CH4 molecules decomposing to a CH3--H radical pair. Two H atoms recombine in a diffusion limited step to H2. Further, secondary dissociation of CH3 to H and CH2 contributes to H production. To a minor amount, implanted ions generate C and H knock-on atoms via elastic encounters which abstract hydrogen atoms or insert into chemical bonds (carbon atoms only). Fourier transform infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS) analyses indicate that if these energy-loss processes accumulate up to 6 ± 3% H atoms in the CH4 target, more than 90% of the ice is released in an explosive ejection into the gas phase. This mechanism represents a powerful pathway to supply newly formed molecules from interstellar grains back to the gas phase of the interstellar medium even at temperatures as low as 10 K.
机译:用9.0 MeVα粒子和7.3 MeV质子在10至50 K之间的温度下于4×10-10 mbar辐照甲烷冰,以阐明银河系宇宙射线粒子与地外有机物的相互作用形成原子以及分子氢冰。理论计算的重点是受辐照目标中离子诱导的碰撞级联的计算机模拟。我们的数据表明,超过99%的能量通过非弹性相互作用转移到靶标的电子系统,从而形成分解为CH3--H自由基对的电子激发CH4分子。两个H原子在扩散受限的步骤中重组为H2。此外,CH3与H和CH2的二次解离有助于H的产生。极少数情况下,注入的离子会通过弹性碰撞而生成C和H敲除原子,这些原子会提取氢原子或插入化学键中(仅碳原子)。傅立叶变换红外光谱(FTIR)和四极质谱(QMS)分析表明,如果这些能量损失过程在CH4目标中积累了高达6±3%的H原子,则爆炸爆炸会释放出90%以上的冰进入气相。该机制代表了即使在低至10 K的温度下也能将新形成的分子从星际颗粒供应回星际介质的气相的有效途径。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号