首页> 外文期刊>The Astrophysical journal >The Las Campanas Infrared Survey. IV. The Photometric Redshift Survey and the Rest-Frame R-Band Galaxy Luminosity Function at 0.5 ≤ z ≤ 1.5
【24h】

The Las Campanas Infrared Survey. IV. The Photometric Redshift Survey and the Rest-Frame R-Band Galaxy Luminosity Function at 0.5 ≤ z ≤ 1.5

机译:拉斯坎帕纳斯红外线调查。 IV。 0.5≤z≤1.5的光度红移测量和静止帧R波段银河系光度函数

获取原文
           

摘要

We present rest-frame, R-band, galaxy luminosity function measurements for three different redshift ranges: 0.5 ≤ z ≤ 0.75, 0.75 ≤ z ≤ 1.0, and 1.0 ≤ z ≤ 1.5. Our measurements are based on photometric redshifts for ~3000 H-band-selected galaxies with apparent magnitudes 17 ≤ H ≤ 20 from the Las Campanas Infrared Survey. We show that our photometric redshifts are accurate with an rms dispersion between the photometric and spectroscopic redshifts of σz/(1 + z) ≈ 0.08. Using galaxies identified in the Hubble Deep Field-South and Chandra Deep Field-South regions, we find, respectively, that 7.3% ± 0.2% and 16.7% ± 0.4% of the H ≤ 20 galaxies are at z ≥ 1. We first demonstrate that the systematic uncertainty inherent in the luminosity function measurements because of uncertainties in photometric redshifts is nonnegligible and therefore must be accounted for. We then develop a technique to correct for this systematic error by incorporating the redshift error functions of individual galaxies in the luminosity function analysis. The redshift error functions account for the non-Gaussian characteristics of photometric redshift uncertainties. They are the products of a convolution between the corresponding redshift likelihood functions of individual galaxies and a Gaussian distribution function that characterizes template-mismatch variance. We demonstrate, based on a Monte Carlo simulation, that we are able to completely recover the bright end of the intrinsic galaxy luminosity function using this technique. Finally, we calculate the luminosity function separately for the total H-band-selected sample and for a subsample of early-type galaxies that have a best-fit spectral type of E/S0 or Sab from the photometric redshift analysis. The primary results of this analysis are (1) the galaxy luminosity functions are consistent with a Schechter form, (2) the evolution of the comoving luminosity density ? of H-band-selected galaxies is characterized by Δ log ?/Δ log(1 + z) = 0.6 ± 0.1 at rest frame 6800 ?, and (3) ?R for color-selected, early-type galaxies exhibits moderate evolution from z ~ 1.5 to ~0.3. Specifically, ?R for these red galaxies brighter than 1.0 (1.6) L* could decrease with increasing redshift by at most a factor of 3 (6) over this redshift range after removing possible stellar brightening according to the most extreme stellar evolution scenario.
机译:我们介绍了三种不同红移范围的静止帧,R波段,银河系亮度函数测量:0.5≤z≤0.75、0.75≤z≤1.0和1.0≤z≤1.5。我们的测量是基于Las Campanas红外测量得出的约3000个H波段选择星系的光度红移,这些星系的视星等为17≤H≤20。我们表明,光度红移是准确的,并且在光度和光谱红移之间存在均方根色散,σz/(1 + z)≈0.08。使用在哈勃深场南部和钱德拉深场南部区域中识别出的星系,我们分别发现H≤20星系的7.3%±0.2%和16.7%±0.4%位于z≥1。由于光度红移的不确定性,在光度函数测量中固有的系统不确定性是不可忽略的,因此必须予以考虑。然后,我们通过在发光度函数分析中合并单个星系的红移误差函数,来开发一种校正此系统误差的技术。红移误差函数说明了光度红移不确定性的非高斯特性。它们是各个星系的相应红移似然函数与表征模板不匹配方差的高斯分布函数之间的卷积的乘积。基于蒙特卡洛模拟,我们证明了我们能够使用这种技术完全恢复固有星系发光度函数的亮端。最后,我们根据光度红移分析,分别为总的H波段选定样本和具有最适合光谱类型E / S0或Sab的早期类型星系的子样本分别计算亮度函数。该分析的主要结果是:(1)银河系光度函数与Schechter形式一致;(2)共同移动的光度密度的演化? H波段选择星系的特征是在静止帧6800?时Δlog?/Δlog(1 + z)= 0.6±0.1,以及(3)选色早期型星系的?R从z〜1.5至〜0.3。具体来说,根据最极端的恒星演化场景,在移除可能的恒星增亮之后,这些比1.0(1.6)L *亮的红色星系的ΔR在该红移范围内会随着红移的增加而减少最多三(6)倍。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号