首页> 外文期刊>The Astrophysical journal >Steady State Electrostatic Layers from Weibel Instability in Relativistic Collisionless Shocks
【24h】

Steady State Electrostatic Layers from Weibel Instability in Relativistic Collisionless Shocks

机译:相对论无碰撞冲击中的Weibel不稳定引起的稳态静电层

获取原文
获取外文期刊封面目录资料

摘要

It is generally accepted that magnetic fields generated in the nonlinear development of the transverse Weibel instability provide effective collisionality in unmagnetized collisionless shocks. Recently, extensive two- and three-dimensional simulations improved our understanding of the growth and saturation of the instability in colliding plasma shells. However, the steady state structure of the shock wave transition layers remains poorly understood. We use basic physical considerations and order-of-magnitude arguments to study the steady state structure in relativistic unmagnetized collisionless shocks in pair plasmas. The shock contains an electrostatic layer resulting from the formation of stationary, magnetically focused current filaments. The filaments form where the cold upstream plasma and the counterstreaming thermal plasma interpenetrate. The filaments are not entirely neutral, and strong electrostatic fields are present. Most of the downstream particles cannot cross this layer into the upstream medium because they are trapped by the electrostatic field. We identify the critical location in the shock transition layer where the electromagnetic field ceases to be static. At this location, the degree of charge separation in the filaments reaches a maximum value and the current inside the filaments comes close to the Alfvén limit. We argue that the radius of the current filaments upstream of the critical location is about equal to the upstream plasma skin depth. Finally, we show that some downstream particles cross the electrostatic layer and run ahead of the shock into the preshock medium without causing instability. These particles may play an important role in diffusive particle acceleration.
机译:人们普遍认为,横向韦贝尔不稳定性的非线性发展中产生的磁场在未磁化的无碰撞冲击中提供了有效的碰撞性。最近,广泛的二维和三维模拟改善了我们对碰撞等离子体壳不稳定性的增长和饱和的理解。然而,对于冲击波过渡层的稳态结构仍然知之甚少。我们使用基本的物理考虑因素和量级论据来研究对等离子体中相对论未磁化无碰撞冲击的稳态结构。电击包含一个静电层,该静电层是由固定的,磁聚焦的电流丝形成的。长丝在冷的上游等离子体和逆流的热等离子体相互渗透的地方形成。灯丝不是完全中性的,并且存在强静电场。大多数下游粒子无法通过该层进入上游介质,因为它们被静电场捕获。我们确定了冲击过渡层中电磁场不再静止的关键位置。在此位置,灯丝中的电荷分离程度达到最大值,并且灯丝内部的电流接近Alfvén极限。我们认为临界位置上游的当前灯丝半径大约等于上游等离子体趋肤深度。最后,我们表明一些下游粒子穿过静电层,并在电击之前进入电击前介质,而不会引起不稳定。这些粒子可能在扩散粒子加速中起重要作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号