首页> 外文期刊>The Astrophysical journal >Physics of the Neupert Effect: Estimates of the Effects of Source Energy, Mass Transport, and Geometry Using RHESSI and GOES Data
【24h】

Physics of the Neupert Effect: Estimates of the Effects of Source Energy, Mass Transport, and Geometry Using RHESSI and GOES Data

机译:Neupert效应的物理学:使用RHESSI和GOES数据估算源能,质量输运和几何的影响

获取原文
获取外文期刊封面目录资料

摘要

The "empirical Neupert effect" (ENE) is the observed temporal correlation of the hard X-ray (HXR) flux FHXR(t) with the time derivative of the soft X-ray (SXR) flux SXR(t) in many flares. This is widely taken to mean that the energetic electrons responsible for FHXR(t) by thick-target collisional bremsstrahlung are the main source of heating and mass supply (via chromospheric evaporation) of the SXR-emitting hot coronal plasma. If this interpretation were correct, one would expect better correlation between the beam power supply Pbeam(t), inferred from the HXR spectrum, and the actual power Pin(t) required to explain the SXR flux and spectrum, allowing for variations in both emission measure (EM) and temperature T, for radiative and conductive cooling losses, and for complexities of geometry like multiple loops. We call this the "theoretical Neupert effect" (TNE). To test if it is true that Pbeam(t) and Pin(t) inferred from data are better correlated than FHXR(t) and SXR(t), we use an approximate approach for a simple single-loop geometry and rough estimates of the particle and energy transport and apply the model to RHESSI and GOES data on four flares. We find that if the beam low cutoff energy E1 is taken as constant, the correlation of Pbeam(t), Pin(t) is no better than that of FHXR(t), SXR(t). While our modeling contains many approximations to cooling and other physics, ignored entirely from ENE data considerations, there seems to be no reason why their order-of-magnitude inclusion should make the TNE worse rather than better, although this should be checked by more accurate simulations. These results suggest that one or more of the following must be true: (1) fast electrons are not the main source of SXR plasma supply and heating, (2) the beam low cutoff energy varies with time, or (3) the TNE is strongly affected by source geometry. These options are discussed in relation to possible future directions for TNE research.
机译:“经验纳珀特效应”(ENE)是在许多耀斑中观察到的硬X射线(HXR)通量FHXR(t)与软X射线(SXR)通量SXR(t)的时间导数的时间相关性。这被广泛认为是指厚目标碰撞致辐射引起FHXR(t)的高能电子是发射SXR的热日冕等离子体的热量和质量供应(通过色球蒸发)的主要来源。如果这种解释是正确的,则可以期望从HXR频谱推断出的光束电源Pbeam(t)与解释SXR通量和频谱所需的实际功率Pin(t)之间具有更好的相关性,从而允许两种发射均发生变化测量(EM)和温度T,以获得辐射和传导的冷却损耗,以及复杂的几何形状(如多个回路)。我们称其为“理论诺珀特效应”(TNE)。为了测试从数据推断出的Pbeam(t)和Pin(t)是否比FHXR(t)和SXR(t)更好地相关,我们对简单的单回路几何结构和近似估计值使用近似方法粒子和能量传输,并将该模型应用于四个耀斑的RHESSI和GOES数据。我们发现,如果将束的低截止能量E1设为常数,则Pbeam(t),Pin(t)的相关性不会好于FHXR(t),SXR(t)的相关性。尽管我们的模型包含许多冷却和其他物理的近似值,但被ENE数据考虑完全忽略了,但似乎没有理由为什么将其数量级包括在内会使TNE变差而不是变好,尽管应该通过更准确的方法进行检查模拟。这些结果表明必须满足以下一项或多项要求:(1)快速电子不是SXR等离子体供应和加热的主要来源;(2)束低截止能量随时间变化;或者(3)TNE是受源几何图形的强烈影响。讨论了与TNE研究可能的未来方向有关的这些选项。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号