首页> 外文期刊>The Astrophysical journal >Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation
【24h】

Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation

机译:太阳星云的演变。 IV。巨大气态原行星形成

获取原文
获取外文期刊封面目录资料

摘要

The discovery of the first extrasolar planets, with masses in the range of ~0.5 MJup (MJup = Jupiter mass) to ~3 MJup, demands a reevaluation of theoretical mechanisms for giant planet formation. Here we consider a long-discarded mechanism, forming giant planets through the gravitational instability of a protoplanetary disk. Radiative hydrodynamical calculations of the thermal structure of an axisymmetric protoplanetary disk with a mass of ~0.13 M☉ (inside 10 AU), orbiting a solar-mass star, predict that the outer disk may be cool enough (~100 ± 50 K) to become gravitationally unstable. This possibility is investigated here with a fully three-dimensional hydrodynamics code. Growth of significant nonaxisymmetry occurs within a few rotation periods of the outer disk and can result in the formation of several discrete, multiple-MJup clumps in 103 yr. These giant gaseous protoplanets (GGPPs) are gravitationally bound and tidally stable and so should eventually form giant planets. Modest-sized solid cores may form through dust grain growth and sedimentation prior to the centers of the GGPPs reaching planetary densities. The inner disk remains nearly axisymmetric throughout these phases, suggesting a scenario in which the formation of terrestrial planets occurs slowly through collisional accumulation in the hot inner nebula, while rapid formation of GGPPs occurs in the cooler regions of the nebula. Falling disk surface densities would restrict GGPP formation to an annulus, outside of which icy outer planets would have to form slowly through collisional accumulation. GGPP formation occurs for both locally isothermal and locally adiabatic disk thermodynamics, provided that the Toomre Q stability parameter indicates instability (Qmin ≈ 1). Low-order modes, especially m = 1 and 2, are dominant. Provided that a means can be found for inducing massive protoplanetary disks to undergo the GGPP instability (e.g., clumpy accretion of infalling gas onto a marginally stable disk), the GGPP mechanism appears to be a prompt alternative to the long-favored but protracted core accretion mechanism of giant planet formation. Observations hold the promise of deciding which of these two mechanisms is preferred by young stars.
机译:第一批太阳系外行星的发现质量在〜0.5 MJup(MJup =木星质量)到〜3 MJup范围内,需要重新评估形成巨型行星的理论机制。在这里,我们考虑一个长期丢弃的机制,它通过原行星盘的重力不稳定性形成巨大的行星。对质量约为0.13M☉(在10 AU内),绕太阳质量恒星运行的轴对称原行星盘的热结构进行的辐射流体力学计算预测,外层盘可能足够冷(约100±50 K),足以变得引力不稳定。这里用全三维流体力学代码研究这种可能性。显着的非轴对称性增长发生在外盘的几个旋转周期内,并可能导致在<103年内形成几个离散的多个MJup团块。这些巨大的气态原行星(GGPP)受万有引力作用和潮汐稳定作用,因此最终应形成巨大的行星。在GGPP的中心达到行星密度之前,中等大小的实心核心可能通过尘埃颗粒的生长和沉降而形成。在这些阶段中,内盘几乎保持轴对称,这表明了一种场景,其中地球行星的形成是通过在热内部星云中的碰撞积累而缓慢发生的,而GGPP的快速形成是在星云的较冷区域发生的。磁盘表面密度的下降将把GGPP的形成限制在一个环带上,在该环带的外面,冰冷的外行星必须通过碰撞积累而缓慢形成。如果Toomre Q稳定性参数指示不稳定性(Qmin≈1),则对于局部等温和局部绝热盘热力学都会发生GGPP形成。低阶模式尤其是m = 1和2。如果可以找到一种方法来诱发巨大的原行星盘经历GGPP的不稳定(例如,气体的块状积聚到边际稳定的磁盘上),那么GGPP机制似乎可以替代长期的但长期的核心积聚。巨行星形成的机制。观测结果有望决定年轻恒星更喜欢这两种机制中的哪一种。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号