...
首页> 外文期刊>The Astrophysical journal >Imbalanced Weak Magnetohydrodynamic Turbulence
【24h】

Imbalanced Weak Magnetohydrodynamic Turbulence

机译:弱磁流体动荡不平衡

获取原文

摘要

Weak MHD turbulence consists of waves that propagate along magnetic field lines, in both directions. When two oppositely directed waves collide, they distort each other, without changing their respective energies. Each wave suffers many collisions before cascading; by contrast, in strong MHD turbulence, waves cascade on the same timescale at which they collide. "Imbalance" means that more energy is going in one direction than the other. In general, MHD turbulence is imbalanced. Yet imbalanced MHD cascades are not understood. For example, turbulence in the solar wind is observed to be imbalanced, so solar wind turbulence will not be understood until a theory of the imbalanced cascade is developed. We solve weak MHD turbulence that is imbalanced. Of crucial importance is that the energies going in both directions are forced to equalize at the dissipation scale. This "pinning" of the energy spectra was discovered by Grappin and coworkers. It affects the entire inertial range. Weak MHD turbulence is particularly interesting because perturbation theory is applicable. Hence, it can be described with a simple kinetic equation. Galtier and coworkers derived this kinetic equation. We present a simpler, more physical derivation, based on the picture of colliding wavepackets. In the process, we clarify the role of the zero-frequency mode. We also explain why Goldreich & Sridhar claimed that perturbation theory is inapplicable, and why this claim is wrong. (Our "weak" is equivalent to Goldreich & Sridhar's "intermediate.") We perform numerical simulations of the kinetic equation to verify our claims. We construct simplified model equations that illustrate the main effects. Finally, we show that a large magnetic Prandtl number does not have a significant effect, and that hyperviscosity leads to a pronounced bottleneck effect.
机译:弱MHD湍流由沿磁场线在两个方向上传播的波组成。当两个方向相反的波发生碰撞时,它们会相互扭曲,而不会改变它们各自的能量。每个波在级联之前都会遭受很多碰撞;相比之下,在强烈的MHD湍流中,波在碰撞的相同时间尺度上级联。 “不平衡”意味着一个方向上的能量要多于另一个方向。通常,MHD湍流是不平衡的。然而,不了解MHD级联不平衡。例如,观察到太阳风中的湍流是不平衡的,因此直到发展出不平衡叶栅的理论之前,太阳风的湍流才能被理解。我们解决了不平衡的弱MHD湍流。至关重要的是,两个方向的能量都必须在耗散范围内相等。能量谱的这种“固定”是由Grappin及其同事发现的。它会影响整个惯性范围。弱MHD湍流特别令人感兴趣,因为微扰理论适用。因此,可以用简单的动力学方程来描述。 Galtier和他的同事得出了这个动力学方程。基于碰撞波包的图片,我们提出了一个更简单,更物理的推导。在此过程中,我们阐明了零频率模式的作用。我们还解释了为什么Goldreich&Sridhar声称微扰理论不适用,以及为什么这种说法是错误的。 (我们的“弱”等同于Goldreich&Sridhar的“中级”。)我们对动力学方程进行数值模拟,以验证我们的主张。我们构建简化的模型方程式,以说明主要影响。最后,我们显示出大的Prandtl磁性值没有显着影响,并且高粘度会导致明显的瓶颈效应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号