首页> 外文期刊>The Astrophysical journal >Stellar Turbulent Convection. I. Theory
【24h】

Stellar Turbulent Convection. I. Theory

机译:恒星湍流对流。一,理论

获取原文
获取外文期刊封面目录资料

摘要

The description of stellar turbulent convection requires a minimum of five coupled, time-dependent, nonlocal, differential equations for the five variables: turbulent kinetic energy, turbulent potential energy, turbulent pressure, convective flux, and energy dissipation. Any fewer number of equations makes the model local. In this paper, we present the following results: 1. We derive the five coupled equations using a new turbulence model. The physical foundations and the turbulence statistics on which the model was tested are discussed. The model is able to reproduce the high Rayleigh number laboratory and direct numerical simulation data corresponding to medium-to-high values of the Peclet number (a measure of the efficiency of convection). 2. One of the major difficulties for any stellar convective model is the description of the low-efficiency, low Pe number region in which the physical timescale is no longer the turbulent timescale but the radiative one. No previous turbulence model has been able to incorporate these multiple timescales within the same framework properly. The present model does. 3. Overshooting is an unsolved problem in stellar structure. Its solution requires not only the above ingredients, but an additional one, a nonlocal model. This is because in the stably stratified region where ? - ?ad 0, the only source of energy is diffusion, a nonlocal process. We discuss why the expressions used thus far to describe diffusion terms are inadequate. We then present a model that was successfully tested against LES data on the convective planetary boundary layer. 4. We analyze the nonlocal models of Gough and Xiong and discuss the approximations that are required to derive them from the full set of equations. 5. We discuss a model that relates the up/down drafts filling factors found by DNS/LES to the skewness of the velocity field which can be computed from the turbulence model. The results from DNS/LES and this model can thus be cross-checked. 6. We show that the stationary, local limit of the model reproduces recent local models (independently derived) which have been successfully tested against a variety of astrophysical data. 7. We discuss the fact that if the dissipation is described by a local model with a mixing length l (as done by all authors thus far), the remaining nonlocal equations exhibit divergences which preclude a physical solution to be found. OV results based on this method may be a coincidence since they are arrived at by fine tuning a coefficient. 8. The role of compressibility is discussed.
机译:恒星湍流对流的描述至少需要五个变量耦合的,随时间变化的非局部微分方程,用于五个变量:湍动能,湍动势能,湍流压力,对流通量和能量耗散。更少的方程式数量使模型成为局部的。在本文中,我们给出以下结果:1.我们使用新的湍流模型推导了五个耦合方程。讨论了测试模型的物理基础和湍流统计数据。该模型能够重现实验室的高瑞利数,并直接导引与Peclet数的中到高值(对流效率的度量)相对应的数值模拟数据。 2.任何恒星对流模型的主要困难之一是对低效率,低Pe数区域的描述,在该区域中,物理时标不再是湍流时标,而是辐射时标。没有以前的湍流模型能够将这些多个时标正确地合并到同一框架中。本模型可以。 3.过冲是恒星结构中尚未解决的问题。它的解决方案不仅需要上述成分,而且还需要一种非本地模型。这是因为在稳定分层区域中? -?ad <0,唯一的能量来源是扩散,这是一个非局部过程。我们讨论了为什么到目前为止用于描述扩散项的表达式不足。然后,我们提出了一个模型,该模型已成功针对对流行星边界层上的LES数据进行了测试。 4.我们分析了Gough和Xiong的非局部模型,并讨论了从整套方程组导出它们所需的近似值。 5.我们讨论了一个模型,该模型将DNS / LES发现的上/下吃水深度填充因子与速度场的偏度相关联,该偏度可以从湍流模型中计算出来。因此可以对DNS / LES和该模型的结果进行交叉检查。 6.我们表明,模型的固定局部极限再现了已成功针对各种天体物理数据进行测试的最新局部模型(独立推导)。 7.我们讨论了这样一个事实:如果耗散是由一个混合长度为l的局部模型描述的(到目前为止所有作者所做的),则其余的非局部方程会出现发散,从而无法找到物理解。基于此方法的OV结果可能是巧合,因为它们是通过微调系数得出的。 8.讨论了可压缩性的作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号