...
首页> 外文期刊>The Astrophysical journal >Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
【24h】

Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model

机译:建模磁盘星系的演化。一,化学动力学方法与银河系模型

获取原文
           

摘要

Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
机译:在这里,我们介绍了二维化学动力学代码CoDEx,它是为以自洽的方式对星系演化建模而开发的。该代码解决了三个恒星成分和多相星际介质(云和云间介质)的流体动力学和动量方程,包括恒星形成,I型和II型超新星,行星状星云,恒星风,蒸发和凝结,阻力,云碰撞,加热和冷却,以及恒星核合成。这些过程被同时处理,在时空尺度上耦合很大,以说明反馈和自我调节过程,这在银河系的演化中起着极其重要的作用。从最初的原银河系云到现在,各个阶段都跟踪着不同质量和角动量的星系的演化。在第一篇论文中,我们介绍了银河系的代表性模型,并将其与观测结果进行了比较。化学动力学模型的能力通过与各种观察结果的极好的一致性令人信服地证明。此外,在全球范围内,也可以解决迄今为止只能由人为约束解释的众所周知的问题(G矮问题,局部有效收益率之间的差异等)。从处于病毒平衡的旋转原银河气体云开始,由于耗散的云-云碰撞而崩溃,我们可以详细追踪银河的演化。由于坍塌,气体密度增加,恒星形成,并且第一批II型超新星爆炸。由于II型超新星释放的能量,坍塌时间比动态自由下落时间长1个数量级。超新星还将从大质量恒星喷出的富含金属的热气体驱入光晕,结果,形成恒星的区域中的云的金属性比光晕中的云低。在t = 6×109 yr之前不会形成观察到的负金属性梯度。这些向外的气流阻止了局部恒星形成速率与富集之间任何明显的相关性,也阻止了独特的年龄-金属性关系。但是,情况更加复杂,因为中等质量恒星(I型超新星和行星状星云)的质量返回取决于前驱体的类型而延迟。由于我们的化学动力学模型包括所有这些过程,因此我们可以计算例如恒星的[O / H]分布,并在凸起,圆盘和晕圈的各处找到良好的一致性。从银河中氧与铁的比率,我们可以确定不同类型的Ia型超新星(例如碳爆燃或Chandrasekhar子模型)的超新星([II + Ib] / Ia)比率,并发现该比率应在范围1.0-3.8。化学动力学模型还跟踪其他化学元素(例如,N + C),密度分布,气体流量,恒星和云的速度弥散,恒星形成,行星状星云速率,云碰撞,凝结和蒸发速率,以及由于辐射。应将对星系演化的化学动力学处理视为一种必要的发展,其中应考虑影响动力学,能量和化学演化的那些过程。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号