首页> 外文期刊>Sensors >Mechanical Structural Design of a MEMS-Based Piezoresistive Accelerometer for Head Injuries Monitoring: A Computational Analysis by Increments of the Sensor Mass Moment of Inertia ?
【24h】

Mechanical Structural Design of a MEMS-Based Piezoresistive Accelerometer for Head Injuries Monitoring: A Computational Analysis by Increments of the Sensor Mass Moment of Inertia ?

机译:基于MEMS的压阻式加速度计用于头部损伤监测的机械结构设计:通过传感器惯性质量矩增量的计算分析?

获取原文
       

摘要

This work focuses on the proof-mass mechanical structural design improvement of a tri-axial piezoresistive accelerometer specifically designed for head injuries monitoring where medium-G impacts are common; for example, in sports such as racing cars or American Football. The device requires the highest sensitivity achievable with a single proof-mass approach, and a very low error (1%) as the accuracy for these types of applications is paramount. The optimization method differs from previous work as it is based on the progressive increment of the sensor proof-mass mass moment of inertia (MMI) in all three axes. Three different designs are presented in this study, where at each step of design evolution, the MMI of the sensor proof-mass gradually increases in all axes. The work numerically demonstrates that an increment of MMI determines an increment of device sensitivity with a simultaneous reduction of cross-axis sensitivity in the particular axis under study. This is due to the linkage between the external applied stress and the distribution of mass (of the proof-mass), and therefore of its mass moment of inertia. Progressively concentrating the mass on the axes where the piezoresistors are located (i.e., x - and y -axis) by increasing the MMI in the x - and y -axis, will undoubtedly increase the longitudinal stresses applied in that areas for a given external acceleration, therefore increasing the piezoresistors fractional resistance change and eventually positively affecting the sensor sensitivity. The final device shows a sensitivity increase of about 80% in the z -axis and a reduction of cross-axis sensitivity of 18% respect to state-of-art sensors available in the literature from a previous work of the authors. Sensor design, modelling, and optimization are presented, concluding the work with results, discussion, and conclusion.
机译:这项工作的重点是改进三轴压阻式加速度计的质量-质量机械结构设计,该传感器专门设计用于中等G冲击常见的头部损伤监测;例如,在赛车或美式橄榄球等运动中。该器件要求采用单质量验证方法可实现的最高灵敏度,并且误差极低(<1%),因为这些类型的应用的精度至关重要。该优化方法与以前的工作有所不同,它基于所有三个轴上传感器质量惯性质量惯性矩(MMI)的逐步增加。这项研究提出了三种不同的设计,其中在设计演进的每个步骤中,传感器质量保证的MMI在所有轴上逐渐增加。这项工作从数值上证明了MMI的增加决定了设备灵敏度的增加,同时在研究的特定轴上横轴灵敏度的同时降低。这是由于外部施加应力与质量(质量块)的分布之间的联系所致,因此也要归因于其质量惯性矩。通过增加x和y轴上的MMI,将质量逐渐集中在压阻器所在的轴上(即x和y轴),无疑将增加在给定外部加速度下施加在该区域上的纵向应力,因此增加了压敏电阻的分数电阻变化,并最终对传感器灵敏度产生积极影响。相对于现有文献中作者从以前的工作中获得的最新传感器,最终设备在z轴上的灵敏度提高了约80%,在横轴上的灵敏度降低了18%。介绍了传感器的设计,建模和优化,并通过结果,讨论和结论结束了工作。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号