...
首页> 外文期刊>Sensors >Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA
【24h】

Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA

机译:概念验证:在美国ME Caribou使用CS650反射仪开发积雪液体含水量分析仪

获取原文
           

摘要

The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness’s plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack’s liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack’s LWC and temperature profiles. For this purpose, we created an easily-applicable, low-cost, automated, and continuous LWC profiling instrument using reflectometers at the Cooperative Remote Sensing Science and Technology Center-Snow Analysis and Field Experiment (CREST-SAFE) in Caribou, ME, USA, and tested it during the snow melt period (February–April) immediately after installation in 2014. Snow Thermal Model (SNTHERM) LWC simulations forced with CREST-SAFE meteorological data were used to evaluate the accuracy of the instrument. Results showed overall good agreement, but clearly indicated inaccuracy under wet snow conditions. For this reason, we present two (for dry and wet snow) statistical relationships between snow LWC and dielectric permittivity similar to Topp’s equation for the LWC of mineral soils. These equations were validated using CREST-SAFE in situ data from winter 2015. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Additionally, the equations seemed to be able to capture the snowpack state (i.e., onset of melt, medium, and maximum saturation). Lastly, field test results show advantages, such as: automated, continuous measurements, the temperature profiling of the snowpack, and the possible categorization of its state. However, future work should focus on improving the instrument’s capability to measure the snowpack’s LWC profile by properly calibrating it with in situ LWC measurements. Acceptable validation agreement indicates that the developed snow LWC, temperature, and wetness profiler offers a promising new tool for snow hydrology research.
机译:积雪中的液态水量决定了其湿度。雪湿度的时间演变在流域内雪雪雪崩的预测,融水释放以及水的可利用性估计和评估中起着重要作用。然而,使用传统的原位测量技术来测量积雪的液态水含量(LWC)及其随时间的变化仍然是一项艰巨的任务,也是一个艰巨的任务。我们提出了一种基于时域反射仪(TDR)和CS650土壤水分反射仪的方法来测量积雪的轻质水和温度曲线。为此,我们在美国ME.Caribou的合作遥感科学技术中心-雪分析和野外实验(CREST-SAFE)中使用反射计创建了一种易于使用,低成本,自动化且连续的LWC剖析仪,并在2014年安装后立即在融雪期(2月至4月)对其进行了测试。使用CREST-SAFE气象数据强制进行的雪热模型(SNTHERM)LWC模拟来评估该仪器的准确性。结果显示出总体良好的一致性,但清楚地表明在湿雪条件下不准确。因此,我们提出了雪LWC和介电常数之间的两种统计关系(对于干雪和湿雪),这与矿物土壤的LWC的Topp方程相似。这些方程式已使用2015年冬季以来的CREST-SAFE现场数据进行了验证。与使用先前研究开发的经验公式获得的LWC估算值相比,结果显示出较高的一致性,并且与湿雪LWC估算值相比略有改善。另外,这些方程似乎能够捕获积雪的状态(即融化,中等和最大饱和度的开始)。最后,现场测试结果显示出一些优点,例如:自动连续测量,雪堆的温度曲线以及其状态的可能分类。但是,未来的工作应该集中在通过使用原位LWC测量正确校准雪具的LWC轮廓来提高其测量能力。可接受的验证协议表明,已开发的降雪LWC,温度和湿度廓线仪为降雪水文学研究提供了有希望的新工具。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号