...
首页> 外文期刊>Sensors >Solution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor
【24h】

Solution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor

机译:使用姿势图和RGB-D传感器解决低动态环境中的SLAM问题

获取原文
           

摘要

In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.
机译:在这项研究中,我们提出了一种通过使用姿态图和RGB-D(红绿蓝深度)传感器解决低动态环境中同时定位和映射(SLAM)问题的解决方案。低动态环境是指对象的位置在很长的间隔内变化的情况。因此,在低动态环境中,机器人很难识别对象的重新定位,这与在高动态环境中可以使用各种移动物体检测算法检测相对快速移动的物体不同。当一段时间内观察到相同的移动对象时,环境的变化会导致成组的虚假循环关闭,这意味着传统的SLAM算法会产生错误的结果。为了解决这个问题,我们提出了一种新颖的SLAM方法来处理低动态环境。所提出的方法使用姿势图结构和RGB-D传感器。首先,为了有效地修剪错误分组的约束,根据具有噪声协方差的分组规则对代表机器人姿势的图形节点进行分组。接下来,根据基于分组节点的错误度量,修剪姿势图的错误约束。消除错误信息后重新优化姿势图结构,并获得校正后的定位和映射结果。使用移动机器人系统在实际实验中验证了该方法的性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号