首页> 外文期刊>Sensors >Piezoresistive Sensitivity, Linearity and Resistance Time Drift of Polysilicon Nanofilms with Different Deposition Temperatures
【24h】

Piezoresistive Sensitivity, Linearity and Resistance Time Drift of Polysilicon Nanofilms with Different Deposition Temperatures

机译:不同沉积温度下多晶硅纳米薄膜的压阻灵敏度,线性和电阻时间漂移

获取原文
           

摘要

Our previous research work indicated that highly boron doped polysilicon nanofilms (≤100 nm in thickness) have higher gauge factor (the maximum is ∼34 for 80 nm-thick films) and better temperature stability than common polysilicon films (≥ 200nm in thickness) at the same doping levels. Therefore, in order to further analyze the influence of deposition temperature on the film structure and piezoresistance performance, the piezoresistive sensitivity, piezoresistive linearity (PRL) and resistance time drift (RTD) of 80 nm-thick highly boron doped polysilicon nanofilms (PSNFs) with different deposition temperatures were studied here. The tunneling piezoresistive model was established to explain the relationship between the measured gauge factors (GFs) and deposition temperature. It was seen that the piezoresistance coefficient (PRC) of composite grain boundaries is higher than that of grains and the magnitude of GF is dependent on the resistivity of grain boundary (GB) barriers and the weight of the resistivity of composite GBs in the film resistivity. In the investigations on PRL and RTD, the interstitial-vacancy (IV) model was established to model GBs as the accumulation of IV pairs. And the recrystallization of metastable IV pairs caused by material deformation or current excitation is considered as the prime reason for piezoresistive nonlinearity (PRNL) and RTD. Finally, the optimal deposition temperature for the improvement of film performance and reliability is about 620 °C and the high temperature annealing is not very effective in improving the piezoresistive performance of PSNFs deposited at lower temperatures.
机译:我们以前的研究工作表明,与普通的多晶硅膜(厚度≥200nm)相比,高硼掺杂的多晶硅纳米膜(厚度≤100nm)具有更高的应变系数(80 nm厚度的最大值为〜34)和更好的温度稳定性。相同的掺杂水平。因此,为了进一步分析沉积温度对薄膜结构和压阻性能的影响,采用80 nm厚的高硼掺杂多晶硅纳米薄膜(PSNFs)的压阻灵敏度,压阻线性(PRL)和电阻时间漂移(RTD)。在这里研究了不同的沉积温度。建立了隧道压阻模型以解释测得的表观因子(GFs)与沉积温度之间的关系。可以看出,复合晶界的压阻系数(PRC)高于晶粒,并且GF的大小取决于晶界(GB)势垒的电阻率以及复合GBs的电阻率在膜电阻率中的权重。 。在对PRL和RTD的研究中,建立了间质空缺(IV)模型以将GB建模为IV对的累积。由材料变形或电流激励引起的亚稳态IV对的重结晶被认为是压阻非线性(PRNL)和RTD的主要原因。最后,用于改善膜性能和可靠性的最佳沉积温度约为620°C,并且高温退火对于改善在较低温度下沉积的PSNF的压阻性能不是十分有效。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号