...
首页> 外文期刊>Sensors >Wind Tunnel Analysis of the Airflow through Insect-Proof Screens and Comparison of Their Effect When Installed in a Mediterranean Greenhouse
【24h】

Wind Tunnel Analysis of the Airflow through Insect-Proof Screens and Comparison of Their Effect When Installed in a Mediterranean Greenhouse

机译:通过防虫网的气流的风洞分析及其安装在地中海温室中的效果比较

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The present work studies the effect of three insect-proof screens with different geometrical and aerodynamic characteristics on the air velocity and temperature inside a Mediterranean multi-span greenhouse with three roof vents and without crops, divided into two independent sectors. First, the insect-proof screens were characterised geometrically by analysing digital images and testing in a low velocity wind tunnel. The wind tunnel tests gave screen discharge coefficient values of C d,φ of 0.207 for screen 1 (10 × 20 threads·cm ?2 ; porosity φ = 35.0%), 0.151 for screen 2 (13 × 30 threads·cm ?2 ; φ = 26.3%) and 0.325 for screen 3 (10 × 20 threads·cm ?2 ; porosity φ = 36.0%), at an air velocity of 0.25 m·s ?1 . Secondly, when screens were installed in the greenhouse, we observed a statistical proportionality between the discharge coefficient at the openings and the air velocity u i measured in the centre of the greenhouse, u i = 0.856 C d + 0.062 (R 2 = 0.68 and p -value = 0.012). The inside-outside temperature difference Δ T io diminishes when the inside velocity increases following the statistically significant relationship Δ T io = (?135.85 + 57.88/ u i ) 0.5 (R 2 = 0.85 and p -value = 0.0011). Different thread diameters and tension affects the screen thickness, and means that similar porosities may well be associated with very different aerodynamic characteristics. Screens must be characterised by a theoretical function C d,φ = [(2 eμ / K p ρ )·(1/ u s ) + (2 eY/K p 0.5 )] ?0.5 that relates the discharge coefficient of the screen C d,φ with the air velocity u s . This relationship depends on the three parameters that define the aerodynamic behaviour of porous medium: permeability K p , inertial factor Y and screen thickness e (and on air temperature that determine its density ρ and viscosity μ ). However, for a determined temperature of air, the pressure drop-velocity relationship can be characterised only with two parameters: Δ P = au s 2 + bu s .
机译:本工作研究了具有不同几何和空气动力学特性的三个防虫网对具有三个屋顶通风口且没有农作物的地中海多跨温室(分为两个独立的区域)内空气流速和温度的影响。首先,通过分析数字图像并在低速风洞中进行测试,对防虫屏风进行几何表征。风洞试验得出,筛网1的筛网排放系数值C d,φ为0.207(10×20螺纹·cm?2;孔隙度φ= 35.0%),筛网2为0.151(13×30螺纹·cm?2;筛网3的φ= 26.3%),风速为0.25m·sφ1的情况下,筛网3为0.325(10×20线·cm 2;孔隙率φ= 36.0%)。其次,当在温室中安装筛网时,我们观察到开口处的排放系数与在温室中心测得的空气流速ui之间的统计比例,ui = 0.856 C d + 0.062(R 2 = 0.68和p-值= 0.012)。当内部速度按照统计上显着的关系ΔTio =(Δ135.85+ 57.88 / u i)0.5(R 2 = 0.85且p值= 0.0011)增加时,内外温差ΔTio减小。不同的螺纹直径和张力会影响滤网的厚度,这意味着相似的孔隙率很可能与非常不同的空气动力学特性相关。滤网必须通过理论函数C d来表征,φ= [(2eμ/ K pρ)·(1 / us)+(2 eY / K p 0.5)]?0.5与滤网C d的排放系数相关,φ随风速us。这种关系取决于定义多孔介质的空气动力学行为的三个参数:渗透率K p,惯性因子Y和筛网厚度e(以及确定其密度ρ和粘度μ的空气温度)。然而,对于确定的空气温度,压降-速度关系只能用两个参数来表征:ΔP = aus 2 + bu s。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号