...
首页> 外文期刊>Sensors >Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments
【24h】

Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments

机译:粘性流体环境中原子力显微镜攻丝模式的尖端效应

获取原文
           

摘要

Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
机译:在液体环境中具有适用操作类型的原子力显微镜被广泛用于扫描生物样本的轮廓。接触操作模式允许尖端直接接触样本,但有时会损坏样本。因此,轻敲操作模式可以代替接触模式。敲击模式大约在共振频率下触发显微镜的悬臂,因此尖端会周期性地敲打样本。众所周知,悬臂会产生额外的液体压力,从而导致共振频率漂移。研究表明,通过原子力显微镜的敲击模式测得的蛋白质表面高度比其他方法测得的高度要小25%。这种差异可能归因于引起的表面流体动力压力,这值得研究。在本文中,我们引入了一种半分析方法来分析各种尖端几何形状的压力分布。根据我们的分析,由锥形尖端引起的样品上的最大流体动压力为〜0.5 Pa,例如,可以在尖端敲击之前,通过压缩将细胞预变形几纳米。而且,在不考虑尖端效应的情况下,在试样表面上计算出的压力是该压力的20倍。这些结果尚未在其他论文中提出。这项研究还涉及了主要因素,例如蛋白质表面的表面高度,蛋白质的机械刚度随加载速度的增加以及影响样品局部压力的尖端半径。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号