...
首页> 外文期刊>Sensors >Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece
【24h】

Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece

机译:遥感估算实际蒸散量:在希腊色萨利平原的应用

获取原文

摘要

Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remote-sensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and NOAA-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson-Buffum method performed better during the first half of the crop development stage, while the Granger method performed better during the remaining of the development stage and the entire maturing stage. The parameter that influences the estimations significantly is the wind speed whose high values result in high underestimates of evapotranspiration. Thus, it should be studied further in future.
机译:遥感可以帮助改善对蒸散量地理分布的估计,从而有助于改善大面积耕地的灌溉需求和可持续水资源管理的用水需求。为了实现这些目标,本研究计算了2001年夏季希腊色萨利平原上的每日实际蒸散量,该地区是具有重要农业意义的广阔灌溉区。修改并应用了三种不同的方法:Granger(2000)和Carlson and Buffum(1989)的遥感方法结合了卫星数据和地面气象测量方法,以及经过修改的FAO(粮食和农业组织)Penman-Monteith方法(艾伦(Allen)等人(1998年),它被选作参考方法。卫星数据与在三个最近的气象站收集的地面数据一起使用。这三种方法均利用NOAA-AVHRR(美国国家海洋与大气管理局-先进超高分辨率辐射计)传感器图像的可见通道1和2以及红外通道4和5来计算反照率和NDVI(归一化植被指数),以及表面温度。粮农组织Penman-Monteith和Granger方法仅使用NOAA-15卫星图像来获取平均地表温度。对于Carlson-Buffum方法,使用了NOAA-14和NOAA-15卫星图像的组合,因为需要早晨平均表面温度升高的速率。得出的估计结果表明,卡尔森-布丰方法和格兰杰方法大体上都遵循了粮农组织粮农组织Penman-Monteith方法的变化。两种方法都有可能估算蒸散量的空间分布,因此与参考粮农组织Penman-Monteith方法的相对一致性程度取决于作物的生长期。特别是,卡尔森-布法(Carlson-Buffum)方法在作物发育阶段的前半部分表现更好,而格兰杰(Granger)方法在其余的发育阶段和整个成熟阶段表现更好。影响估计的参数是风速,其高值会导致蒸发蒸腾量的低估。因此,应在以后进行进一步研究。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号