...
首页> 外文期刊>Sensors >PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals
【24h】

PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

机译:PAU / GNSS-R:使用全球导航卫星系统信号的实时延迟多普勒地图反射仪的实施,性能和初步结果

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Signals from Global Navigation Satellite Systems (GNSS) were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice…) can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs) either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell) and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS).
机译:来自全球导航卫星系统(GNSS)的信号最初是为确定位置和速度而设计的,但是它们也可以用作机会信号。给定表面的反射过程会改变散射信号的属性,因此,通过处理反射信号,可以获取有关被研究表面(陆地,海洋,冰层……)的相关地球物理数据。本质上,GNSS-R接收器是一种多通道GNSS接收器,它可以计算输入信号在给定信号的多个不同延迟和多普勒频点下从给定卫星接收的功率。构建这种接收器的第一种方法包括对散射信号进行采样和存储,以用于以后的后期处理。但是,需要一种实时的方法来解决该问题,以立即获得有用的地球物理变量并减少数据量。 FPGA技术的使用使这成为可能,同时可以轻松地重新配置系统。信号跟踪和处理约束对于完全设计几个新模块是必需的。这项工作中所描述的已实现系统的独特性在于它能够为四个同时发生的卫星或仅一个同时存在的卫星,但具有大量仓的实时延迟多普勒地图(DDM)进行计算的能力。最初的测试是在海上的悬崖上进行的,证明了该仪器在从反射的GNSS / R信号中实时计算DDM的成功性能。这些测量的处理应在海况(主要由地表风和海浪驱动)与总体DDM形状之间产生定量关系。最终目标是使用DDM形状来纠正海况对L带亮度温度的影响,以改善海面盐度(SSS)的获取。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号