首页> 外文期刊>RSC Advances >Improving optoelectronic and charge transport properties of D–π–D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications
【24h】

Improving optoelectronic and charge transport properties of D–π–D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications

机译:改善D–π–D型二酮吡咯并吡咯并py衍生物作为有机太阳能电池应用的多功能材料的光电和电荷传输性能

获取原文
           

摘要

A series of novel diketopyrrolopyrrole-pyrene-based molecules were designed for small molecule based organic solar cell (SMOSC) applications. Their electronic and charge transfer properties were investigated by applying the PBE0/6-31G(d,p) method. The absorption spectra were simulated using the TD-PBE0/6-31G(d,p) method. The results showed that the frontier molecular orbital (FMO) energy levels, reorganization energy, the energetic driving force, and absorption spectra can be tuned by the introduction of different aromatic heterocyclic groups to the side of diketopyrrolopyrrole fragments' backbones. Additionally, the designed molecules possess suitable FMOs to match those of typical acceptors PC _(61) BM and PC _(71) BM. Meanwhile, the designed molecules can act as good ambipolar charge transport materials in SMOSC applications. Meanwhile, the electron and hole reorganization energies of the designed molecules are smaller than those of the typical electron and hole transport materials, respectively. Moreover, the differences between electron and hole reorganization energies do not exceed 0.046 eV. Our results suggest that the designed molecules can act as promising candidates for donor and ambipolar charge transport materials in SMOSC applications.
机译:针对基于小分子的有机太阳能电池(SMOSC)应用设计了一系列新颖的基于二酮吡咯并吡咯-py的分子。通过应用PBE0 / 6-31G(d,p)方法研究了它们的电子和电荷转移性质。使用TD-PBE0 / 6-31G(d,p)方法模拟吸收光谱。结果表明,可以通过在二酮吡咯并并吡咯片段的主链一侧引入不同的芳香族杂环基团来调节前沿分子轨道(FMO)的能级,重组能,能量驱动力和吸收光谱。此外,设计的分子具有合适的FMO,以匹配典型受体PC_(61)BM和PC_(71)BM的FMO。同时,设计的分子可以在SMOSC应用中充当良好的双极性电荷传输材料。同时,设计分子的电子和空穴重组能分别小于典型的电子和空穴传输材料。而且,电子和空穴重组能之间的差不超过0.046eV。我们的结果表明,设计的分子可以作为SMOSC应用中供体和双极性电荷传输材料的有希望的候选者。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号