...
首页> 外文期刊>RSC Advances >Nano-architecture of silica nanoparticles as a tool to tune both electrochemical and catalytic behavior of NiII@SiO2
【24h】

Nano-architecture of silica nanoparticles as a tool to tune both electrochemical and catalytic behavior of NiII@SiO2

机译:二氧化硅纳米颗粒的纳米结构,可同时调节NiII @ SiO2的电化学和催化行为

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The present work introduces a facile synthetic route for efficient doping of [Ni ~(II) (bpy) _( x ) ] into silica nanoparticles with various sizes and architectures. Variation of the latter results in different concentrations of the Ni ~(II) complexes at the interface of the composite nanoparticles. The UV-Vis analysis of the nanoparticles reveals changes in the inner-sphere environment of the Ni ~(II) complexes when embedded into the nanoparticles, while the inner-sphere of Ni ~(II) is invariant for the nanoparticles with different architecture. Comparative analysis of the electrochemically generated redox transformations of the Ni ~(II) complexes embedded in the nanoparticles of various architectures reveals the latter as the main factor controlling the accessibility of Ni ~(II) complexes to the redox transitions which, in turn, controls the electrochemical behavior of the nanoparticles. The work also highlights an impact of the nanoparticulate architecture in catalytic activity of the Ni ~(II) complexes within the different nanoparticles in oxidative C–H fluoroalkylation of caffeine. Both low leakage and high concentration of the Ni ~(II) complexes at the interface of the composite nanoparticles enables fluoroalkylated caffeine to be obtained in high yields under recycling of the nanocatalyst five times at least.
机译:本工作介绍了一种简便的合成途径,可将[Ni〜(II)(bpy)_(x)]有效掺杂到具有各种尺寸和结构的二氧化硅纳米粒子中。后者的变化导致复合纳米颗粒界面处不同浓度的Ni〜(II)配合物。纳米粒子的UV-Vis分析表明,嵌入纳米粒子后,Ni〜(II)配合物的内球环境发生了变化,而镍〜(II)的内球对于具有不同结构的纳米粒子而言是不变的。各种结构的纳米粒子中嵌入的Ni〜(II)配合物的电化学生成的氧化还原转变的比较分析表明,后者是控制Ni〜(II)配合物对氧化还原转变的可及性的主要因素,进而控制纳米粒子的电化学行为。这项工作还强调了纳米颗粒结构对咖啡因的氧化C–H氟烷基化反应中不同纳米颗粒中Ni〜(II)配合物的催化活性的影响。在复合纳米颗粒的界面处的低泄漏和高浓度的Ni〜(II)络合物都使得在至少五次再循环纳米催化剂的情况下能够以高收率获得氟代烷基化咖啡因。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号