...
首页> 外文期刊>RSC Advances >Quasiparticle energies, exciton level structures and optical absorption spectra of ultra-narrow ZSiCNRs
【24h】

Quasiparticle energies, exciton level structures and optical absorption spectra of ultra-narrow ZSiCNRs

机译:超窄ZSiCNRs的准粒子能,激子能级结构和光吸收光谱

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The hydrogen-passivated N chain zigzag silicon carbide nanoribbons (N-ZSiCNRs) are indexed by their width N (the number of zigzag Si–C chains across the nanoribbon). Based on first-principles GW and Bethe–Salpeter equation (BSE) approaches, we investigated the quasiparticle band structures, exciton level structures and optical absorption spectra of the ultra-narrow N-ZSiCNRs with N = 2–3. It is found that the GW band gap of 3-ZSiCNR is 0.804 eV, which is more than two times larger than the HSE06 band gap (0.401 eV). The GW band gap of 2-ZSiCNR is 2.911 eV, which is also almost more than two times larger than the HSE06 band gap (1.621 eV). These results indicate that for 1-dimensional structure materials, HSE06 approaches underestimate the band gap of the system. The GW + BSE calculations demonstrate that the optical absorption spectra of the N-ZSiCNRs are dominated by edge-state-derived excitons with large binding energy, composed of a characteristic series of exciton states. It is found that the edge-state excitons of N-ZSiCNR belong to charge-transfer excitons, where the excited electron is confined to a Si edge while the hole is located on a C edge. The exciton binding energy increases with decreasing width N, which indicates that the quantum confinement effect enhances with decreasing width N. The excitons in 2-ZSiCNR can have a binding energy up to 1.78 eV. In addition, the exciton level structure and wave function are classified. It is very interesting to find a relationship between the node of the exciton wave functions and the incoming polarization light exciton excitation. For example, in the longitudinal optical absorption spectra, if the exciton whose wave function possesses an odd number of nodes is optically active, then the exciton whose wave function possesses an even number of nodes is optically inactive. In contrast, in the transverse optical absorption spectra, the exciton whose wave function possesses an odd number of nodes is optically inactive, while the exciton whose wave function possesses an even number of nodes is optically active.
机译:氢钝化的 N 链之字形碳化硅纳米带( N -ZSiCNRs)由其宽度 N (之字形Si–C的数目)索引纳米带的链条)。基于第一原理 GW 和Bethe–Salpeter方程(BSE)方法,我们研究了超窄 N 的准粒子能带结构,激子能级结构和光吸收光谱 N = 2–3的-ZSiCNRs。发现3-ZSiCNR的 GW 带隙为0.804 eV,是HSE06带隙(0.401 eV)的两倍多。 2-ZSiCNR的 GW 带隙为2.911 eV,也几乎是HSE06带隙(1.621 eV)的两倍多。这些结果表明,对于一维结构材料,HSE06方法低估了系统的带隙。 GW + BSE计算表明, N -ZSiCNRs的光吸收光谱主要由具有大结合能的边缘态衍生激子控制,该激子由一系列激子态。发现 N -ZSiCNR的边缘态激子属于电荷转移激子,当空穴位于C边缘时,受激电子被限制在Si边缘。激子结合能随着宽度 N 的减小而增加,这表明量子约束效应随着宽度 N 的减小而增强。 2-ZSiCNR中的激子可以具有高达1.78 eV的结合能。此外,还对激子能级结构和波动函数进行了分类。找到激子波函数的节点与入射偏振光激子激发之间的关系是非常有趣的。例如,在纵向光吸收光谱中,如果其波函数具有奇数个节点的激子是光学活性的,则其波函数具有偶数个节点的激子是光学惰性的。相反,在横向光吸收光谱中,波函数具有奇数个节点的激子是光学惰性的,而波函数具有偶数个节点的激子是光学活性的。

著录项

  • 来源
    《RSC Advances》 |2017年第82期|共12页
  • 作者

    Ping Lou;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号