首页> 外文期刊>Nature Communications >Swimming by reciprocal motion at low Reynolds number
【24h】

Swimming by reciprocal motion at low Reynolds number

机译:在低雷诺数下通过往复运动游泳

获取原文
           

摘要

Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.
机译:生物微生物与鞭毛和纤毛一起游泳,它们在粘性流体中执行不可逆运动以降低雷诺数(Re)。这种对称性要求是珀塞尔扇贝定理的结果,该定理使微游泳器所需的驱动方案变得复杂。但是,最重要的生物医学流体是非牛顿流体,扇贝定理不再成立。因此,应该有可能在非牛顿流体中随着周期性周期性的体形变化而运动的微游泳器。在这里,我们报告了一个对称的“微扇贝”,这是一种单铰链微掠器,可以通过在低Re的往复运动推动剪切增稠和剪切稀化(非牛顿)流体。我们的测量值与数值和分析理论预测值之间的极佳一致性表明,净推进力是通过改变剪切速率来调节流体粘度引起的。这种相互游动的机制为设计生物医学微型设备提供了新的可能性,该微型设备可以通过简单的驱动方案在非牛顿生物流体中推进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号