首页> 外文期刊>Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation >Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae
【24h】

Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae

机译:在酵母酵母中转移RNA转录后的加工,营业额和亚细胞动力学。

获取原文
       

摘要

Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3′ mature sequence and, for tRNAHis, addition of a 5′ G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ~15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
机译:转移RNA(tRNA)对于蛋白质合成至关重要。在真核生物中,tRNA生物合成采用一种特殊的RNA聚合酶,该酶可生成初始转录本,随后必须先通过多种转录后步骤对其进行修饰,然后tRNA才能成为在蛋白质合成中起作用的成熟分子。强大的酿酒酵母系统中可能存在的遗传,基因组,生化和细胞生物学方法,使我们对tRNA转录后加工的理解有了令人振奋的进步,并获得了对tRNA转化和tRNA亚细胞动力学的新见解。 tRNA加工步骤包括去除转录的前导序列和尾随序列,向3'成熟序列添加CCA,而对于tRNAHis,添加5'G。大约20%的酵母tRNA由含内含子的基因编码。去除内含子的三步剪接过程出乎意料地发生在酵母的细胞质中,并且除了tRNA剪接之外,每种剪接酶的功能似乎都显得微不足道。转录后添加了25种不同的核苷修饰,形成了tRNA,其中约15%的残基是A,G,U或C以外的核苷。这些修饰的核苷具有许多重要功能,包括tRNA区分,翻译保真,和tRNA质量控制。成熟的tRNA非常稳定,但是酵母细胞具有多种途径降解未适当加工或折叠的tRNA。成熟的tRNA在细胞中也是动态的,从细胞质移动到细胞核,然后又回到细胞质。人们对这种逆行过程的机制和功能了解甚少。在这里,解决了有关tRNA转录后加工,更新和亚细胞动力学的知识状态,突出了仍然存在的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号