首页> 外文期刊>Astronomy and astrophysics >Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR ?
【24h】

Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR ?

机译:使用LOFAR

获取原文
           

摘要

Context. Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free–free) emission. Aims. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density ( Σ _(SFR)) at 1 kpc scale. Radio spectral indices give us, by means of spectral ageing, a handle on the transport of cosmic rays using the electrons as a proxy for GeV nuclei. Methods. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio Σ _(SFR)maps using the Condon relation. We compared these maps with hybrid Σ _(SFR)maps from a combination of GALEX far-ultraviolet and Spitzer 24 μ m data using plots tracing the relation at the highest angular resolution allowed by our data at 1.2?×?1.2 kpc~(2)resolution. Results. The RC emission is smoothed with respect to the hybrid Σ _(SFR)owing to the transport of cosmic-ray electrons (CREs) away from star formation sites. This results in a sublinear relation ( Σ _(SFR))_(RC)?∝?[( Σ _(SFR))_(hyb)]~( a ), where a ?=?0.59?±?0.13 (140 MHz) and a ?=?0.75?±?0.10 (1365 MHz). Both relations have a scatter of σ ?=?0.3 dex. If we restrict ourselves to areas of young CREs ( α ?> ??0.65; I _( ν )?∝? ν ~( α )), the relation becomes almost linear at both frequencies with a ?≈?0.9 and a reduced scatter of σ ?=?0.2?dex. We then simulate the effect of CRE transport by convolving the hybrid Σ _(SFR)maps with a Gaussian kernel until the RC–SFR relation is linearised; CRE transport lengths are l ?=?1–5 kpc. Solving the CRE diffusion equation, assuming dominance of the synchrotron and inverse-Compton losses, we find diffusion coefficients of D ?=?(0.13–1.5) ?×?10~(28)?cm~(2)?s~(?1)at 1 GeV. Conclusions. A RC–SFR relation at 1.4 GHz can be exploited to measure SFRs at redshift z ?≈?10 using 140 MHz observations.
机译:上下文。星系中的无线电连续性(RC)辐射使我们能够测量不受尘埃灭绝影响的恒星形成率(SFR),其中的低频部分不受热(自由)发射的污染。目的我们以1 kpc的比例校准从空间分辨的140 MHz RC发射到SFR表面密度(Σ_(SFR))的转换。放射性光谱指数通过光谱老化为我们提供了使用电子作为GeV原子核的代理的宇宙射线传输的方法。方法。我们使用了LOFAR两米天巡(LoTSS)和NGC 5194的档案低周率ARray(LOFAR)数据对三个星系(NGC 3184、4736和5055)的最新观测结果。使用面校准技术创建了地图。并使用Condon关系转换为射电Σ_(SFR)映射。我们将这些图与GALEX远紫外线和Spitzer 24μm数据组合而成的混合Σ_(SFR)图进行了比较,使用图以1.2?×?1.2 kpc〜(2 )解析度。结果。由于宇宙射线电子(CRE)远离恒星形成部位,因此RC发射相对于混合Σ_(SFR)变得平滑。这导致亚线性关系(Σ_(SFR))_(RC)?∝?[(Σ_(SFR))_(hyb)]〜(a),其中α=?0.59?±?0.13(140 MHz)和?=?0.75?±?0.10(1365 MHz)。两种关系的散度均为σ?=?0.3 dex。如果我们将自己限制在年轻的CRE区域(α?>≥0.65; I _(ν)?∝?ν〜(α)),则该关系在两个频率下几乎都呈线性,α≈?0.9,散射减小的σθ=θ0.2θdex。然后,我们通过将混合Σ_(SFR)映射与高斯核卷积进行卷积,直到RC-SFR关系线性化,来模拟CRE传输的效果。 CRE传输长度为l?=?1-5 kpc。求解CRE扩散方程,假设同步加速器占主导地位,并且存在逆康普顿损耗,我们发现扩散系数为D?=?(0.13-1.5)?×?10〜(28)?cm〜(2)?s〜(? 1)在1 GeV。结论。可以利用140 MHz观测值,利用1.4 GHz的RC-SFR关系来测量红移z≈≈10时的SFR。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号