首页> 外文期刊>Astronomy and astrophysics >Planck 2015 results - III. LFI systematic uncertainties
【24h】

Planck 2015 results - III. LFI systematic uncertainties

机译:普朗克2015年业绩-III。 LFI系统不确定性

获取原文
           

摘要

We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal (“null-maps”). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10–20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.
机译:我们介绍了低频仪器(LFI)的系统效果不确定性的当前核算,该不确定性与2015年普朗克宇宙学结果发布有关,显示了我们数据集的鲁棒性和一致性,尤其是极化分析。我们使用两种互补的方法:(i)基于实测数据和已知系统效应的物理模型进行模拟; (ii)分析包含相同天空信号的差异图(“空图”)。 LFI温度数据受到仪器噪声的限制。在大角度范围内,系统效应比宇宙微波背景(CMB)温度功率谱低几个数量级。在极化中,系统不确定性受校准不确定性支配,并与多极范围10–20的CMB E模式竞争。基于我们所有已知系统效应的模型,我们表明这些效应对使用30和353GHz通道作为前景模板的70GHz EE光谱得出的电离光学深度造成约0.2σ的轻微偏差。在30 GHz时,在温度和极化的所有尺度上,系统效应都比银河系前景小,这使我们可以将此通道视为同步辐射的可靠模板。我们评估了LFI对组件分离后的CMB图和功率谱造成的残留不确定性,并表明这些影响在所有尺度上均小于CMB幅度。我们还评估了对非高斯性研究的影响,并认为它可以忽略不计。一些残差仍然出现在特定的天空测量对的零位图中,尤其是在30 GHz时,这表明由于对波束远旁瓣的了解不完善,可能导致杂散光污染。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号