...
首页> 外文期刊>Astronomy and astrophysics >Atmospheric tides in Earth-like planets
【24h】

Atmospheric tides in Earth-like planets

机译:类地行星的大气潮

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, which includes Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Aims. Unlike the solid core, the atmosphere of a planet is subject to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified for application to the wide variety of extrasolar planetary systems. Methods. We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the perturbation of pressure, density, temperature, and velocity field caused by a thermogravitational tidal perturbation. From these quantities, we deduce the expressions of atmospheric Love numbers and tidal torque exerted on the fluid shell by the star. The equations are written for the general case of a thick envelope and the simplified one of a thin isothermal atmosphere. Results. The dynamics of atmospheric tides depends on the frequency regime of the tidal perturbation: the thermal regime near synchronization and the dynamical regime characterizing fast-rotating planets. Gravitational and thermal perturbations imply different responses of the fluid, i.e. gravitational tides and thermal tides, which are clearly identified. The dependence of the torque on the tidal frequency is quantified using the analytic expressions of the model for Earth-like and Venus-like exoplanets and is in good agreement with the results given by global climate models (GCM) simulations.Introducing dissipative processes such as radiation regularizes the tidal response of the atmosphere, otherwise it is singular at synchronization. Conclusions. We demonstrate the important role played by the physical and dynamical properties of a super-Earth atmosphere (e.g. Coriolis, stratification, basic pressure, density, temperature, radiative emission) in its response to a tidal perturbation.??We point out the key parameters defining tidal regimes (e.g. inertia, Brunt-V?is?l?, radiative frequencies, tidal frequency) and characterize the behaviour of the fluid shell in the dissipative regime, which cannot be studied without considering the radiative losses.
机译:上下文。大气潮汐会严重影响行星的旋转动力学。在包括金星在内的类地行星家族中,这种物理机制与固体潮汐相结合,使角速度在很长的时间尺度上演化并确定了它们自旋的平衡构型。目的与实心核不同,行星的大气同时受到潮汐引力和来自恒星的日射通量的影响。气体的复杂响应本质上与它的物理特性有关。必须对这种依赖性进行表征和量化,以应用于各种太阳系外行星系统。方法。我们开发了一个理论上的全局模型,其中考虑了在缓慢旋转的大气中占主导地位的辐射损耗。我们分析性地计算了由热引力潮汐扰动引起的压力,密度,温度和速度场的扰动。从这些量中,我们推导出恒星施加在流体壳上的大气Love数和潮汐扭矩的表达式。这些方程是针对较厚的外壳和较薄的等温气氛的简化情况编写的。结果。大气潮汐的动力学取决于潮汐扰动的频率状态:接近同步的热状态和表征快速旋转行星的动态状态。引力和热扰动暗示了流体的不同响应,即引力潮汐和热潮汐,它们被清楚地识别出来。扭矩对潮汐频率的依赖性可以通过使用类似地球和金星系外行星的模型的解析表达式来量化,并且与全球气候模型(GCM)模拟给出的结果非常吻合。辐射使大气的潮汐响应规则化,否则在同步时是奇异的。结论。我们证明了超地球大气的物理和动力学特性(例如科里奥利,分层,基本压力,密度,温度,辐射发射)在其对潮汐扰动的响应中所起的重要作用。我们指出了关键参数定义潮汐状态(例如,惯性,Brunt-V?is?l ?、辐射频率,潮汐频率)并表征流体壳在耗散状态下的行为,如果不考虑辐射损耗就无法研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号