...
首页> 外文期刊>Astronomy and astrophysics >Differential adsorption of CHON isomers at interstellar grain surfaces
【24h】

Differential adsorption of CHON isomers at interstellar grain surfaces

机译:星际颗粒表面CHON异构体的差异吸附

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The CHON generic chemical formula covers different isomers such as isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC); the first three have been identified in a large variety of environments in the interstellar medium (ISM). Several phenomena could be at the origin of the observed abundances, such as different pathways of formation and destruction involving gas phase reactions with different possible activation barriers and/or surface processes depending on the local temperature and the nature of the support. Aims. The scope of this article is to shed some light on the interaction of the CHON isomers with interstellar grains as a function of the nature of the surface and to determine the corresponding adsorption energies in order to find whether this phenomenon could play a role in the abundances observed in the ISM. Methods. The question was addressed by means of numerical simulations using first principle periodic density functional theory (DFT) to represent the grain support as a solid of infinite dimension. Results. Regardless of the nature of the model surface (water ice, graphene, silica), two different classes of isomers were identified: weakly bound (HNCO and HCNO) and strongly bound (HOCN and HONC), with the adsorption energies of the latter group being about twice those of the former. The range of the adsorption energies is (from highest to lowest) HOCN > HONC > HNCO > HCNO. They are totally disconnected from the relative stabilities, which range from HNCO > HOCN > HCNO > HONC. Conclusions. The possibility of hydrogen bonding is the discriminating factor in the trapping of CHON species on grain surfaces. Whatever the environment, differential adsorption is effective and its contribution to the molecular abundances should not be ignored. The theoretical adsorption energies provided here could be profitably used for a more realistic modeling of molecule-surfaces interactions.
机译:上下文。 CHON的化学通式涵盖了不同的异构体,例如异氰酸(HNCO),氰酸(HOCN),次黄酸(HCNO)和异次黄酸(HONC);前三个已经在星际介质(ISM)的多种环境中被确定。观察到的丰度可能起源于多种现象,例如,取决于支撑体的温度和性质,涉及气相反应的不同形成和破坏途径,以及不同的可能的活化势垒和/或表面过程。目的本文的范围是根据表面的性质阐明CHON异构体与星际晶粒之间的相互作用,并确定相应的吸附能,以发现这种现象是否可以在丰度方面发挥作用在ISM中观察到。方法。该问题已通过使用第一原理周期性密度泛函理论(DFT)进行数值模拟来解决,以将晶粒支撑体表示为无限大的固体。结果。不管模型表面的性质(水冰,石墨烯,二氧化硅)如何,都鉴定出两种不同类型的异构体:弱键合(HNCO和HCNO)和强键合(HOCN和HONC),后一组的吸附能为大约是前者的两倍。吸附能的范围是(从最高到最低)HOCN> HONC> HNCO> HCNO。它们与相对稳定性(HNCO> HOCN> HCNO> HONC)完全没有关联。结论。氢键的可能性是将CHON物种捕获在晶粒表面的决定因素。在任何环境下,差异吸附都是有效的,并且它对分子丰度的贡献也不容忽视。此处提供的理论吸附能可有益地用于分子表面相互作用的更现实的建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号