...
首页> 外文期刊>Astronomy and astrophysics >Planck intermediate results - LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
【24h】

Planck intermediate results - LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters

机译:普朗克中间结果-LI。宇宙微波背景温度功率谱的特征和宇宙学参数的变化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The six parameters of the standard Λ CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ , the baryon density ω _(b) , the matter density ω _(m) , the angular size of the sound horizon θ _(?) , the spectral index of the primordial power spectrum, n _(s) , and A _(s)e~(? 2 τ ) (where A _(s) is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment ? & 800 in the Planck temperature power spectrum) and an all angular-scale data set ( ? & 2500 Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02 . We find that the shifts, in units of the 1 σ expected dispersion for each parameter, are { Δ τ, Δ A _(s)e~(? 2 τ ),Δ n _(s),Δ ω _(m),Δ ω _(b),Δ θ _(?) } = { ?1.7,?2.2,1.2,?2.0,1.1,0.9 } , with a χ ~(2) value of 8.0. We find that this χ ~(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing ? & 800 instead to ? & 800 , or splitting at a different multipole, yields similar results. We examined the ? & 800 model residuals in the ? & 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Λ CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is τ , which, at fixed A _(s)e~(? 2 τ ) , affects the ? & 800 temperature power spectrum solely through the associated change in A _(s) and the impact of that on the lensing potential power spectrum. We also ask, “what is it about the power spectrum at ? & 800 that leads to somewhat different best-fit parameters than come from the full ? range?” We find that if we discard the data at ? & 30 , where there is a roughly 2 σ downward fluctuation in power relative to the model that best fits the full ? range, the ? & 800 best-fit parameters shift significantly towards the ? & 2500 best-fit parameters. In contrast, including ? & 30 , this previously noted “low- ? deficit” drives n _(s) up and impacts parameters correlated with n _(s) , such as ω _(m) and H _(0) . As expected, the ? & 30 data have a much greater impact on the ? & 800 best fit than on the ? & 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high- ? residuals and the deficit in low- ? power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Λ CDM model.
机译:标准ΛCDM模型的六个参数具有从普朗克温度功率谱得出的最佳拟合值,该值与从WMAP数据得出的最佳拟合值有些偏离。这些变化是由普朗克温度功率谱中的特征以角度尺度驱动的,这些角度尺度以前从未被测量到宇宙方差能级精度。我们已经研究了这些变化,以确定它们是否在预期范围内,并了解其在数据中的来源。以我们的参数集为离子化星系间介质的光学深度τ,重子密度ω_(b),物质密度ω_(m),声层的角度大小θ_(?),光谱指数的原始功率谱n _(s)和A _(s)e〜(?2τ)(其中A _(s)是原始功率谱的幅度),我们研究了最佳类似于WMAP的大角尺度数据集(普朗克温度功率谱中的多极矩≤800)与所有角尺度数据集(β≤2500普朗克温度功率谱)之间的拟合值。 τ在0.07±0.02上。我们发现,对于每个参数,以1σ预期色散为单位的偏移为{Δτ,ΔA _(s)e〜(?2τ),Δn _(s),Δω_(m) ,Δω_(b),Δθ_(α)} = {α1.7,β2.2,1.2,α2.0,1.1,0.9},χ(2)值为8.0。我们发现在我们的模拟数据集中有15%超过了χ〜(2)值,而在9%的模拟数据集中有一个参数偏离了2.2σ以上,这意味着位移并没有异常大。比较? & 800改为? & 800或在不同的多极点分裂会产生相似的结果。我们检查了? & ?中有800个模型残差& 800个功率谱数据,发现驱动这些偏移的特征是在大范围角度范围内的一组振荡。尽管它们在某种程度上类似于增强的重力透镜效应,但响应于这些特征而产生的ΛCDM参数的变化对应于主要由非透镜效应引起的模型光谱变化。唯一的例外是τ,它在固定A _(s)e〜(?2τ)时影响?。 &仅通过A_(s)的相关变化及其对晶状体潜在功率谱的影响即可获得800个温度功率谱。我们还问:“功率谱是什么? & 800产生的最佳拟合参数与全参数产生的参数有所不同。范围?”我们发现如果我们丢弃数据? & 30,相对于最适合全功率的模型,功率有大约2σ的向下波动?范围,? & 800个最适合的参数显着向? & 2500个最适合的参数。相反,包括? & 30日,这个先前指出的“低?缺陷”会驱动n _(s)向上并影响与n _(s)相关的参数,例如ω_(m)和H _(0)。如预期的那样? & 30个数据对? &比800最合适? & 2500最合适。因此,尽管这些变化不是很明显,但我们发现可以通过类似振荡的一组高?的组合效应来理解它们。残差和低?功率,与样本方差一致的偏移,这些偏移恰巧映射到宇宙学参数的变化上。最后,我们检查了普朗克TT数据与其他两个CMB数据集之间的一致性,即普朗克透镜重建和南极望远镜测量的TT功率谱,再次发现缺乏令人信服的证据表明参数存在任何重大偏差,这表明当前CMB数据集提供了ΛCDM模型的内部一致图片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号