首页> 外文期刊>Astronomy and astrophysics >Predicting HCN, HCO, multi-transition CO, and dust emission of star-forming galaxies
【24h】

Predicting HCN, HCO, multi-transition CO, and dust emission of star-forming galaxies

机译:预测恒星形成星系的HCN,HCO,多次转变CO和尘埃排放

获取原文
获取外文期刊封面目录资料

摘要

High- z star-forming galaxies have significantly higher gas fractions and star-formation efficiencies per molecular gas mass than local star-forming galaxies. In this work, we take a closer look at the gas content or fraction and the associated star-formation rate in main sequence and starburst galaxies at z = 0 and z ~ 1 – 2 by applying an analytical model of galactic clumpy gas disks to samples of local spiral galaxies, ULIRGs, submillimeter (smm), and high- z star-forming galaxies. The model simultaneously calculates the total gas mass, H i /H _(2) mass, the gas velocity dispersion, IR luminosity, IR spectral energy distribution, CO spectral line energy distribution (SLED), HCN(1–0) and HCO ~(+) (1–0) emission of a galaxy given its size, integrated star formation rate, stellar mass radial profile, rotation curve, and Toomre Q parameter. The model reproduces the observed CO luminosities and SLEDs of all sample galaxies within the model uncertainties ( ~ 0.3 dex). Whereas the CO emission is robust against the variation of model parameters, the HCN and HCO ~(+) emissions are sensitive to the chemistry of the interstellar medium. The CO and HCN mass-to-light conversion factors, including CO-dark H _(2) , are given and compared to the values found in the literature. All model conversion factors have uncertainties of a factor of two. Both the HCN and HCO ~(+) emissions trace the dense molecular gas to a factor of approximately two for the local spiral galaxies, ULIRGs and smm-galaxies. Approximately 80 % of the molecular line emission of compact starburst galaxies originates in non-self-gravitating gas clouds. The effect of HCN infrared pumping is small but measurable ( 10 – 20 %). The gas velocity dispersion varies significantly with the Toomre Q parameter. The Q = 1.5 model yields high-velocity dispersions ( v _(disp) ? 10 km?s ~(-1) ) consistent with available observations of high- z star-forming galaxies and ULIRGs. However, we note that these high-velocity dispersions are not mandatory for starburst galaxies. The integrated Kennicutt-Schmidt law has a slope of approximately 1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high- z star-forming galaxies. The model shows Kennicutt-Schmidt laws with respect to the molecular gas surface density with slopes of approximately 1.5 for local spiral galaxies, high- z star-forming galaxies. The relation steepens for compact starburst galaxies. The model star-formation rate per unit area is, as observed, proportional to the molecular gas surface density divided by the dynamical timescale. Our relatively simple analytic model together with the recipes for the molecular line emission appears to capture the essential physics of galactic clumpy gas disks.
机译:高z恒星形成星系的气体分数和每分子气体质量的恒星形成效率比本地恒星形成星系高得多。在这项工作中,我们通过将银团块气碟分析模型应用于样本,仔细研究了z = 0和z〜1 – 2时主序列和星爆星系中的气体含量或分数以及相关的恒星形成率局部螺旋星系,ULIRG,亚毫米(smm)和高Z星形成星系。该模型同时计算总气体质量,H i / H _(2)质量,气体速度色散,红外光度,红外光谱能量分布,CO光谱线能量分布(SLED),HCN(1-0)和HCO〜给定星系的大小,集成的恒星形成率,恒星质量径向分布,自转曲线和Toomre Q参数,其(+)(1–0)发射量。该模型再现了模型不确定性(〜0.3 dex)内所有样本星系的观测到的CO光度和SLED。尽管CO排放对模型参数的变化具有鲁棒性,但HCN和HCO〜(+)排放对星际介质的化学反应敏感。给出了CO和HCN的质光转换因子,包括CO暗H _(2)并与文献中的值进行了比较。所有模型转换因子的不确定性均为2。对于局部旋涡星系,ULIRG和smm星系,HCN和HCO〜(+)排放都将致密分子气体追踪到大约两倍。紧凑型星爆星系的分子线发射的大约80%来自非自重气体云。 HCN红外泵浦的作用很小,但可测量(10 – 20%)。气体速度弥散度随着Toomre Q参数的变化而显着变化。 Q = 1.5模型产生的高速色散(v_(disp)?10 km?s〜(-1))与对高z星形成星系和ULIRG的现有观测结果一致。但是,我们注意到对于星爆星系来说,这些高速色散不是强制性的。 Kennicutt-Schmidt的综合定律对于局部旋涡,ULIRG和smm星系的斜率约为1,而对于形成高z星的星系的斜率约为1.7。该模型显示了关于分子气体表面密度的Kennicutt-Schmidt定律,对于局部旋涡星系,高z星形成星系,其斜率约为1.5。对于紧凑的星爆星系,该关系变陡。如所观察到的,每单位面积的模型恒星形成率与分子气体表面密度除以动态时标成比例。我们相对简单的分析模型以及分子线发射的公式似乎捕获了银河团块气碟的基本物理原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号