...
首页> 外文期刊>Astronomy and astrophysics >Reflection nebulae in the Galactic center: soft X-ray imaging polarimetry
【24h】

Reflection nebulae in the Galactic center: soft X-ray imaging polarimetry

机译:银河系中心的反射星云:软X射线成像偏振法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The origin of irradiation and fluorescence of the 6.4 keV bright giant molecular clouds surrounding Sgr A?, the central supermassive black hole of our Galaxy, remains enigmatic despite numerous attempts to decipher it with spectroscopic and timing analyses. Aims. Testing the theory of a past active period of Sgr A? requires opening a new observational window: X-ray polarimetry. In this paper, we aim to show how modern imaging polarimeters could revolutionize our understanding of the Galactic center (GC). Methods. Through Monte Carlo modeling, we produced a 4?8 keV polarization map of the GC. We focused on the polarimetric signature produced by Sgr B1, Sgr B2, G0.11-0.11, Bridge E, Bridge D, Bridge B2, MC2, MC1, Sgr C3, Sgr C2, and Sgr C1. We estimated the resulting polarization that arises from these scattering targets, included polarized flux dilution by the diffuse plasma emission detected toward the GC, and simulated the polarization map that modern polarimetric detectors would obtain assuming the performances of a mission prototype. Results. The eleven reflection nebulae we investigated present a variety of polarization signatures, ranging from nearly unpolarized to highly polarized (~77%) fluxes. Their polarization position angle is found to be normal to the scattering plane, as expected from previous studies. A major improvement in our simulation is the addition of a diffuse, unpolarized plasma emission that strongly affects soft X-ray polarized fluxes. The dilution factor is in the range 50%?70%, making the observation of the Bridge structure unlikely even in the context of modern polarimetry. The best targets are the Sgr B and Sgr C complexes and the G0.11-0.11 cloud, arranged in the order of decreasing detectability. Conclusions. An exploratory observation of a few hundred kilo-seconds of the Sgr B complex would allow a significant detection of the polarization and be sufficient to derive indications of the primary radiation source. A more ambitious program (few Ms) of mapping the giant molecular clouds could then be carried out to probe the turbulent history of Sgr A? with great precision and place important constraints on the composition and three-dimensional position of the surrounding gas.
机译:上下文。尽管我们多次尝试通过光谱和时间分析来破译Sgr A2(我们银河系的中央超大质量黑洞)周围的6.4 keV明亮的巨大分子云的辐射和荧光,但其起源仍然是个谜。目的测试Sgr A过去活跃期的理论吗?需要打开一个新的观察窗:X射线极化仪。在本文中,我们旨在展示现代成像旋光仪如何改变我们对银河系中心(GC)的理解。方法。通过蒙特卡洛建模,我们生成了一个4?8 keV的GC极化图。我们专注于由Sgr B1,Sgr B2,G0.11-0.11,Bridge E,Bridge D,Bridge B2,MC2,MC1,Sgr C3,Sgr C2和Sgr C1产生的极化签名。我们估计了由这些散射目标引起的最终极化,包括通过向GC检测到的扩散等离子体发射对极化通量进行了稀释,并模拟了现代极化检测器假设任务原型的性能所获得的极化图。结果。我们研究的11个反射星云呈现出各种偏振特征,范围从几乎未偏振到高偏振(〜77%)。如先前的研究预期,发现它们的偏振位置角垂直于散射平面。我们仿真的一个主要改进是增加了漫射的非极化等离子体发射,该发射会强烈影响软X射线极化通量。稀释系数在50%到70%的范围内,因此即使在现代极化仪的情况下,也不太可能观察到Bridge结构。最佳目标是Sgr B和Sgr C配合物以及G0.11-0.11云,以可检测性递减的顺序排列。结论。对数百公里秒的Sgr B配合物进行探索性观察将可以对极化进行有效检测,并足以得出主要辐射源的指示。然后可以执行一个更雄心勃勃的绘制巨型分子云图的计划(几位女士)来探究Sgr A?的动荡历史。精度很高,并对周围气体的组成和三维位置施加了重要限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号