首页> 外文期刊>Astronomy and astrophysics >Abundance to age ratios in the HARPS-GTO sample with Gaia DR2
【24h】

Abundance to age ratios in the HARPS-GTO sample with Gaia DR2

机译:带有 Gaia DR2的HARPS-GTO样品中的丰龄比

获取原文
           

摘要

Aims. The purpose of this work is to evaluate how several elements produced by different nucleosynthesis processes behave with stellar age and provide empirical relations to derive stellar ages from chemical abundances. Methods. We derived different sets of ages using Padova and Yonsei–Yale isochrones and H IPPARCOS and Gaia parallaxes for a sample of more than 1000 FGK dwarf stars for which he have high-resolution ( R ~ 115 000) and high-quality spectra from the HARPS-GTO program. We analyzed the temporal evolution of different abundance ratios to find the best chemical clocks. We applied multivariable linear regressions to our sample of stars with a small uncertainty on age to obtain empirical relations of age as a function of stellar parameters and different chemical clocks. Results. We find that [ α /Fe] ratio (average of Mg, Si, and Ti), [O/Fe] and [Zn/Fe] are good age proxies with a lower dispersion than the age-metallicity dispersion. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (i.e., low- α ) but in the case of the chemically defined thick disk stars (i.e., high- α ) only the elements Mg, Si, Ca, and Ti? II show a clear correlation with age. We find that the thick disk stars are more enriched in light- s elements than thin disk stars of similar age. The maximum enrichment of s -process elements in the thin disk occurs in the youngest stars which in turn have solar metallicity. The slopes of the [X/Fe]-age relations are quite constant for O, Mg, Si, Ti, Zn, Sr, and Eu regardless of the metallicity. However, this is not the case for Al, Ca, Cu and most of the s -process elements, which display very different trends depending on the metallicity. This demonstrates the limitations of using simple linear relations based on certain abundance ratios to obtain ages for stars of different metallicities. Finally, we show that by using 3D relations with a chemical clock and two stellar parameters (either T _(eff), [Fe/H] or stellar mass) we can explain up to 89% of age variance in a star. A similar result is obtained when using 2D relations with a chemical clock and one stellar parameter, explaining up to a 87% of the variance. Conclusions. The complete understanding of how the chemical elements were produced and evolved in the Galaxy requires the knowledge of stellar ages and precise chemical abundances. We show how the temporal evolution of some chemical species change with metallicity, with remarkable variations at super-solar metallicities, which will help to better constrain the yields of different nucleosynthesis processes along the history of the Galaxy.
机译:目的这项工作的目的是评估由不同核合成过程产生的几种元素如何随恒星年龄而变化,并提供经验关系以从化学丰度推导恒星年龄。方法。我们使用帕多瓦和延世-耶鲁等时线以及H IPPARCOS和盖亚视差得出了不同的年龄组,这些样本来自1000多颗FGK矮星,这些恒星具有高分辨率(R〜115 000)和高质量的HARPS -GTO程序。我们分析了不同丰度比的时间演变,以找到最佳的化学钟。我们对年龄不确定性很小的恒星样本应用了多元线性回归,以获取年龄作为恒星参数和不同化学钟的函数的经验关系。结果。我们发现,[α/ Fe]比(Mg,Si和Ti的平均值),[O / Fe]和[Zn / Fe]是良好的时效代理,其色散低于时效金属色散。对于化学分离的薄盘星(即低α),几个丰度比与年龄显着相关,但对于化学定义的厚盘星(即高α),只有元素Mg,Si,Ca和TI? II显示出与年龄的明显相关性。我们发现,厚盘状恒星比类似年龄的薄盘状恒星更富集光元素。薄盘中s过程元素的最大富集发生在最年轻的恒星中,这些恒星又具有太阳金属性。对于O,Mg,Si,Ti,Zn,Sr和Eu,[X / Fe]-年龄关系的斜率非常恒定,而与金属无关。但是,Al,Ca,Cu和大多数s工艺元素并非如此,它们根据金属性显示出非常不同的趋势。这证明了使用基于某些丰度比的简单线性关系来获得不同金属度的恒星的年龄的局限性。最后,我们证明了通过使用具有化学钟和两个恒星参数(T_(eff),[Fe / H]或恒星质量)的3D关系,我们可以解释恒星中年龄差异的89%。当使用带有化学钟和一个恒星参数的2D关系时,可获得相似的结果,解释了高达87%的方差。结论。要全面了解银河系中化学元素的产生和演化方式,需要了解恒星时代和精确的化学丰度。我们展示了某些化学物种的时间演变如何随金属性变化,以及超太阳能金属性的显着变化,这将有助于更好地限制银河沿线不同核合成过程的产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号