...
首页> 外文期刊>Astronomy and astrophysics >Non-LTE models for synthetic spectra of type Ia supernovae - III. An accelerated lambda-iteration procedure for the mutual interaction of strong spectral lines in SN Ia models with and without energy deposition
【24h】

Non-LTE models for synthetic spectra of type Ia supernovae - III. An accelerated lambda-iteration procedure for the mutual interaction of strong spectral lines in SN Ia models with and without energy deposition

机译:Ia型超新星-III型合成光谱的非LTE模型。具有和不具有能量沉积的SN Ia模型中强光谱线相互相互作用的加速lambda迭代过程

获取原文

摘要

Context. In type Ia supernova (SN Ia) envelopes a huge number of lines of different elements overlap within their thermal Doppler widths, and this problem is exacerbated by the circumstance that up to 20% of these lines can have a line optical depth higher than 1. The stagnation of the lambda iteration in such optically thick cases is one of the fundamental physical problems inherent in the iterative solution of the non-LTE problem, and the failure of a lambda iteration to converge is a point of crucial importance whose physical significance must be understood completely. Aims. We discuss a general problem related to radiative transfer under the physical conditions of supernova ejecta that involves a failure of the usual non-LTE iteration scheme to converge when multiple strong opacities belonging to different physical transitions come together, similar to the well-known situation where convergence is impaired even when only a single process attains high optical depths. The convergence problem is independent of the chosen frequency and depth grid spacing, independent of whether the radiative transfer is solved in the comoving or observer’s frame, and independent of whether a common complete-linearization scheme or a conventional accelerated lambda iteration (ALI) is used. The problem appears when all millions of line transitions required for a realistic description of SN Ia envelopes are treated in the frame of a comprehensive non-LTE model. The only solution to this problem is a complete-linearization approach that considers all ions of all elements simultaneously, or an adequate generalization of the established ALI technique that accounts for the mutual interaction of the strong spectral lines of different elements and which thereby unfreezes the “stuck” state of the iteration. Methods. The physics of the atmospheres of SN Ia are strongly affected by the high-velocity expansion of the ejecta, which dominates the formation of the spectra at all wavelength ranges. Thus, hydrodynamic explosion models and realistic model atmospheres that take into account the strong deviation from local thermodynamic equilibrium (LTE) are necessary for the synthesis and analysis of the spectra. In this regard one of the biggest challenges we have found in modeling the radiative transfer in SN Ia is the fact that the radiative energy in the UV has to be transferred only via spectral lines into the optical regime to be able to leave the ejecta. However, convergence of the model toward a state where this is possible is impaired when using the standard procedures. We report on improvements in our approach of computing synthetic spectra for SN Ia with respect to (i) an improved and sophisticated treatment of many thousands of strong lines that interact intricately with the “pseudo-continuum” formed entirely by Doppler-shifted spectral lines; (ii) an improved and expanded atomic database; and (iii) the inclusion of energy deposition within the ejecta arising from the radioactive decay of mostly 56Ni and 56Co. Results. We show that an ALI procedure we have developed for the mutual interaction of strong spectral lines appearing in the atmospheres of SNe Ia solves the long-standing problem of transferring the radiative energy from the UV into the optical regime. Our new method thus constitutes a foundation for more refined models, such as those including energy deposition. In this regard we furthermore show synthetic spectra obtained with various methods adopted for the released energy and compare them with observations. We discuss in detail applications of the diagnostic technique by example of a standard type Ia supernova, where the comparison of calculated and observed spectra revealed that in the early phases the consideration of the energy deposition within the spectrum-forming regions of the ejecta does not qualitatively alter the shape of the emergent spectra. Conclusions. The results of our investigation lead to an improved understanding of how
机译:上下文。在Ia型超新星(SN Ia)信封中,大量不同元素的线在其热多普勒宽度内重叠,这种情况因以下情况而加剧:高达20%的这些线的线光学深度可以大于1。在如此光学厚的情况下,λ迭代的停滞是非LTE问题迭代解决方案固有的基本物理问题之一,λ迭代无法收敛是至关重要的一点,其物理意义必须是完全理解。目的我们讨论了与超新星喷射的物理条件下的辐射传递有关的一般问题,其中涉及到属于不同物理转变的多个强不透明现象在一起时,通常的非LTE迭代方案无法收敛,类似于众所周知的情况即使只有一个过程达到较高的光学深度,也会影响收敛。收敛问题与选择的频率和深度网格间距无关,与辐射转移是否在同动或观察者框架中得到解决无关,并且与是否使用通用的完全线性化方案或常规的加速λ迭代(ALI)无关。当在全面的非LTE模型的框架中处理了SN Ia包络的实际描述所需的所有数百万条线路转换时,就会出现问题。解决此问题的唯一方法是同时考虑所有元素的所有离子的完全线性化方法,或者是已建立的ALI技术的适当概括,该技术考虑了不同元素的强光谱线的相互作用,从而解冻了“卡住”的迭代状态。方法。 SN Ia大气层的物理特性受到射流高速膨胀的强烈影响,这主要影响了所有波长范围内光谱的形成。因此,考虑到与局部热力学平衡(LTE)的强烈偏差,必须考虑流体动力爆炸模型和逼真的模型气氛,以进行光谱的合成和分析。在这方面,我们在对SN 1a中的辐射传递进行建模时发现的最大挑战之一是,紫外线中的辐射能量必须仅通过光谱线传递到光学系统中才能离开射流。但是,使用标准程序时,模型向可能的状态的收敛会受到损害。我们报告了关于SN Ia的合成光谱计算方法的改进,涉及以下方面:(i)对数千条与多普勒频移谱线完全形成的“伪连续谱”错综复杂地相互作用的强谱线的改进和完善的处理; (ii)改进和扩大的原子数据库; (iii)射流内包含的能量沉积主要是由56Ni和56Co的放射性衰变引起的。结果。我们表明,我们针对在SNe Ia大气中出现的强光谱线的相互作用而开发的ALI程序解决了将辐射能从UV转移到光学状态的长期存在的问题。因此,我们的新方法为更精细的模型(例如包含能量沉积的模型)奠定了基础。在这方面,我们还显示了采用各种方法获得的释放能量的合成光谱,并将其与观测值进行了比较。我们将通过标准Ia型超新星实例详细讨论诊断技术的应用,其中对计算出的光谱和观察到的光谱进行比较后发现,在早期阶段,对能量沉积在喷射器光谱形成区域内的考虑并没有定性的考虑。改变出射光谱的形状。结论。我们的调查结果使人们对如何

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号