首页> 外文期刊>Astronomy and astrophysics >Grain opacity and the bulk composition of extrasolar planets - II. An analytical model for grain opacity in protoplanetary atmospheres
【24h】

Grain opacity and the bulk composition of extrasolar planets - II. An analytical model for grain opacity in protoplanetary atmospheres

机译:谷物的不透明度和太阳系外行星的整体组成-II。原行星大气中颗粒不透明度的分析模型

获取原文
           

摘要

Context. We investigate the grain opacity κgr in the atmosphere (outer radiative zone) of forming planets. This is important for the observed planetary mass-radius relationship since κgr affects the primordial H/He envelope mass of low-mass planets and the critical core mass of giant planets. Aims. The goal of this study is to derive a simple analytical model for κgr and to explore its implications for the atmospheric structure and resulting gas accretion rate. Methods. Our model is based on the comparison of the timescales of the most important microphysical processes. We consider grain settling in the Stokes and Epstein drag regime, growth by Brownian motion coagulation and differential settling, grain evaporation in hot layers, and grain advection due to the contraction of the envelope. With these timescales and the assumption of a radially constant grain flux, we derive the typical grain size, abundance, and opacity. Results. We find that the dominating growth process is differential settling. In this regime, κgr has a simple functional form; it is given as 27Q/ 8Hρ in the Epstein regime in the outer atmosphere and as 2Q/Hρ for Stokes drag in the deeper layers. Grain growth leads to a typical radial structure of κgr with high ISM-like values in the outer layers but a strong decrease towards the deeper parts where κgr becomes so low that the grain-free molecular opacities take over. Conclusions. In agreement with earlier results, we find that κgr is typically much lower than in the ISM. In retrospect, this suggests that classical giant planet formation models should have considered the grain-free case to be as equally meaningful as the full ISM opacity case. The equations also show that a higher dust input in the top layers does not strongly increase κgr. This has two important implications. First, for the formation of giant planet cores via pebbles, there could be the adverse effect that pebbles tend to increase the grain input high in the atmosphere because of ablation. This could in principle increase the opacity, making giant planet formation difficult. Our study indicates that this potentially adverse effect is not important. Second, it means that a higher stellar [Fe/H] which presumably leads to a higher surface density of planetesimals only favors giant planet formation without being detrimental to it because of an increased κgr. This corroborates the result that core accretion can explain the observed increase of the giant planet frequency with stellar [Fe/H].
机译:上下文。我们调查了形成行星的大气(外部辐射区)中的谷物不透明度κgr。这对于观察到的行星质量半径关系非常重要,因为κgr影响低质量行星的原始H / He包络质量和巨型行星的临界核心质量。目的这项研究的目的是为κgr导出一个简单的分析模型,并探讨其对大气结构和产生的气体积聚率的影响。方法。我们的模型基于最重要的微观物理过程的时间尺度的比较。我们考虑在斯托克斯和爱泼斯坦拖曳制度下的谷物沉降,布朗运动凝结和微分沉降的增长,热层中的谷物蒸发以及由于包膜的收缩而导致的谷物对流。通过这些时间尺度和径向恒定的晶粒通量的假设,我们可以得出典型的晶粒尺寸,丰度和不透明度。结果。我们发现,主要的增长过程是差异解决。在这种情况下,κgr具有简单的功能形式。在外部大气中,在爱泼斯坦政权下,其值为27Q /8Hρ;对于斯托克斯阻力更大的层,其值为2Q /Hρ。晶粒长大会导致典型的κgr放射状结构,其外层具有较高的ISM-like值,但向着较深处的κgr降低得很低,使得κgr变得如此之低,以至无晶粒的分子不透明性得以取代。结论。与先前的结果一致,我们发现κgr通常比ISM低得多。回顾过去,这表明经典的巨型行星形成模型应该考虑无颗粒情况与完全ISM不透明情况同样有意义。该等式还表明,在顶层中较高的粉尘输入不会强烈地增加κgr。这有两个重要含义。首先,对于通过卵石形成巨型行星核,可能会有不利影响,卵石由于烧蚀而倾向于增加大气中的谷物输入量。原则上,这可能会增加不透明度,从而使巨型行星的形成变得困难。我们的研究表明,这种潜在的不利影响并不重要。其次,这意味着较高的恒星[Fe / H]可能会导致较高的小行星表面密度,只会有利于巨型行星的形成而不会因为κgr的增加而对其产生不利影响。这证实了核增生可以解释所观测到的恒星[Fe / H]引起的巨行星频率增加的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号