首页> 外文期刊>Astronomy and astrophysics >Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate
【24h】

Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate

机译:射手座A *的X射线监测16年:从2013年8月开始,即明亮耀斑率上升之前的13个月,证明了微弱耀斑率下降的证据

获取原文
           

摘要

Context. X-ray flaring activity from the closest supermassive black hole Sagittarius A* (Sgr A*) located at the center of our Galaxy has been observed since 2000 October 26 thanks to the current generation of X-ray facilities. In a study of X-ray flaring activity from Sgr A* using Chandra and XMM-Newton public observations from 1999 to 2014 and Swift monitoring in 2014, it was argued that the “bright and very bright” flaring rate has increased from 2014 August 31. Aims. As a result of additional observations performed in 2015 with Chandra , XMM-Newton , and Swift (total exposure of 482?ks), we seek to test the significance and persistence of this increase of flaring rate and to determine the threshold of unabsorbed flare flux or fluence leading to any change of flaring rate. Methods. We reprocessed the Chandra , XMM-Newton , and Swift data from 1999 to 2015 November 2. From these data, we detected the X-ray flares via our two-step Bayesian blocks algorithm with a prior on the number of change points properly calibrated for each observation. We improved the Swift data analysis by correcting the effects of the target variable position on the detector and we detected the X-ray flares with a 3 σ threshold on the binned light curves. The mean unabsorbed fluxes of the 107 detected flares were consistently computed from the extracted spectra and the corresponding calibration files, assuming the same spectral parameters. We constructed the observed distribution of flare fluxes and durations from the XMM-Newton and Chandra detections. We corrected this observed distribution from the detection biases to estimate the intrinsic distribution of flare fluxes and durations. From this intrinsic distribution, we determined the average flare detection efficiency for each XMM-Newton , Chandra , and Swift observation. We finally applied the Bayesian blocks algorithm on the arrival times of the flares corrected from the corresponding efficiency. Results. We confirm a constant overall flaring rate from 1999 to 2015 and a rise in the flaring rate by a factor of three for the most luminous and most energetic flares from 2014 August 31, i.e., about four months after the pericenter passage of the Dusty S-cluster Object (DSO)/G2 close to Sgr A*. In addition, we identify a decay of the flaring rate for the less luminous and less energetic flares from 2013 August and November, respectively, i.e., about 10 and 7 months before the pericenter passage of the DSO/G2 and 13 and 10 months before the rise in the bright flaring rate. Conclusions. The decay of the faint flaring rate is difficult to explain in terms of the tidal disruption of a dusty cloud since it occurred well before the pericenter passage of the DSO/G2, whose stellar nature is now well established. Moreover, a mass transfer from the DSO/G2 to Sgr A* is not required to produce the rise in the bright flaring rate since the energy saved by the decay of the number of faint flares during a long period of time may be later released by several bright flares during a shorter period of time.
机译:上下文。自2000年10月26日以来,得益于当前的X射线设备,我们观测到了距我们银河系中心最近的超大质量黑洞人马座A *(Sgr A *)的X射线爆发活动。在1999年至2014年间使用Chandra和XMM-Newton的公共观测以及2014年的Swift监测研究了Sgr A *的X射线燃烧活动,据称从2014年8月31日起,“明亮而非常明亮”的燃烧速度有所增加目的由于2015年对Chandra,XMM-Newton和Swift进行了其他观察(总暴露量为482ks),我们试图检验这种燃烧率增加的意义和持久性,并确定未吸收的燃烧通量阈值或通量导致扩口率发生任何变化。方法。我们重新处理了从1999年到2015年11月2日的Chandra,XMM-Newton和Swift数据。根据这些数据,我们通过两步贝叶斯块算法检测了X射线耀斑,并事先对正确校正的变化点数进行了校准。每个观察。我们通过校正目标变量位置对检测器的影响来改进Swift数据分析,并在合并的光曲线上检测到3σ阈值的X射线耀斑。假设相同的光谱参数,从提取的光谱和相应的校准文件中一致地计算出107个检测到的耀斑的平均未吸收通量。我们通过XMM-Newton和Chandra检测构造了火炬通量和持续时间的观测分布。我们从检测偏差中纠正了这种观察到的分布,以估算火炬通量和持续时间的固有分布。根据此固有分布,我们确定了每个XMM-Newton,Chandra和Swift观测值的平均耀斑检测效率。最后,我们将贝叶斯块算法应用于从相应效率校正的火炬的到达时间。结果。我们确认,从1999年到2015年,整体眩光率保持恒定,而2014年8月31日(即Dusty S-的中心点通过约四个月),最明亮和最活跃的耀斑的耀斑率提高了三倍。群集对象(DSO)/ G2接近Sgr A *。此外,我们确定了分别从2013年8月和11月开始,即在DSO / G2的中心点通过之前大约10和7个月,以及在DSO / G2的中心点通过之前大约13和10个月,从那时开始,较少发光和较少能量的耀斑的爆发速率下降。耀斑爆发率上升。结论。由于尘埃云的潮汐破坏发生在DSO / G2的星心通过之前,因此难以解释就尘埃云的潮汐破坏而言,微弱的爆发率的衰减,而DSO / G2的恒星性质现已得到充分证实。此外,从DSO / G2到Sgr A *的质量转移不需要产生明亮的扩口率,因为在很长一段时间内微弱的扩口数量的减少所节省的能量可能会在以后释放出来。在较短的时间内出现几次明亮的耀斑。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号