首页> 外文期刊>Astronomy and astrophysics >Chemical signatures of planets: beyond solar-twins
【24h】

Chemical signatures of planets: beyond solar-twins

机译:行星的化学特征:超越太阳双胞胎

获取原文
       

摘要

Context. Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. Aims. To test whether these chemical signatures of planets are real, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). Methods. We measure relative atmospheric parameters and elemental abundances of two groups of stars: a “warm” late-F type dwarf sample (52 stars), and a sample of “metal-rich” solar analogs (59 stars). The strict differential approach that we adopt allows us to determine with high precision (errors ~0.01?dex) the degree of refractory element depletion in our stars independently of Galactic chemical evolution. By examining relative abundance ratio versus condensation temperature plots we are able to identify stars with “pristine” composition in each sample and to determine the degree of refractory-element depletion for the rest of our stars. We calculate what mixture of Earth-like and meteorite-like material corresponds to these depletions. Results. We detect refractory-element depletions with amplitudes up to about 0.15?dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650?K to 5950?K, while it appears to be constant for warmer stars (up to 6300?K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Conclusions. Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a more likely explanation of our observations. More rocky material is necessary to explain the data of solar twins than metal-rich stars, and less for warm stars. However, the sizes of the stars’ convective envelopes at the time of planet formation could be regulating these amplitudes. Our results could be explained if disk lifetimes were shorter in more massive stars, as independent observations indeed seem to suggest. Nevertheless, to reach stronger conclusions we will need a detailed knowledge of extrasolar planetary systems down to at least one Earth mass around a significant number of stars.
机译:上下文。对太阳双星的元素丰度研究表明,太阳化学成分包含太阳系中地球行星形成的特征,即少量但大量消耗了耐火元素。目的为了测试行星的这些化学特征是否真实,我们研究了与太阳双胞胎相比具有更小的对流包络(因此增加了预期效应的幅度)或者可以说更可能容纳行星的恒星(因此增加了对流层)的恒星。签名检测的频率)。方法。我们测量了两组恒星的相对大气参数和元素丰度:“暖” F型F型矮星样本(52星)和“富金属”太阳类似物样本(59星)。我们采用严格的微分方法,可以独立于银河系化学演化,以高精度(误差约为0.01?dex)确定恒星中难熔元素的消耗程度。通过检查相对丰度比与凝结温度的关系图,我们能够确定每个样品中具有“原始”成分的恒星,并确定其余恒星的难熔元素耗竭程度。我们计算出类似于地球和类似于陨石的物质的混合物对应于这些消耗。结果。我们检测到振幅高达0.15?dex的难熔元素耗竭。已知拥有巨大气体行星的恒星的损耗幅度分布与其余恒星相同。最大损耗幅度随有效温度从5650?K到5950?K的增加而增加,而对于较暖的恒星(高达6300?K)似乎是恒定的。在太阳双星中观测到的损耗最大振幅与此处两个样本的最大振幅非常相似。结论。气体巨行星的形成本身不能解释观察到的难熔元素消耗的分布,而岩石材料的形成则更可能解释了我们的观察结果。与富含金属的恒星相比,解释太阳双生的数据需要更多的岩石材料,而对于温暖的恒星则需要更少的岩石。但是,行星形成时恒星对流包络线的大小可能会调节这些振幅。如独立观测确实表明的那样,如果在更大质量的恒星中磁盘寿命缩短,则可以解释我们的结果。尽管如此,要想得出更强的结论,我们将需要了解太阳系外行星系统的详细知识,该系统至少要覆盖大量恒星周围至少一个地球质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号