...
首页> 外文期刊>Astronomy and astrophysics >Analysis of the origin of water, carbon monoxide, and carbon dioxide in the Uranus atmosphere
【24h】

Analysis of the origin of water, carbon monoxide, and carbon dioxide in the Uranus atmosphere

机译:分析天王星大气中水,一氧化碳和二氧化碳的来源

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. We present here an analysis of the potential sources of oxygen species in the Uranus atmosphere. Aims. Our aim is to explain the current measurements of H_(2)O, CO, and CO_(2)in the Uranus atmosphere, which would allow us to constrain the influx of oxygen-bearing species and its origin in this planet. Methods. We used a time-dependent photochemical model of the Uranus atmosphere to ascertain the origin of H_(2)O, CO, and CO_(2). We thoroughly investigated the evolution of material delivered by a cometary impact, together with a combined source, i.e. cometary impact and a steady source of oxygen species from micrometeoroid ablation. Results. We find that an impactor in the size range ~1.2–3.5 km hitting the planet between 450 and 822 yr ago could have delivered the CO currently seen in the Uranus stratosphere. Given the current set of observations, an oxygen-bearing species supply from ice grain ablation cannot be ruled out. Our study also indicates that a cometary impact cannot be the only source for rendering the observed abundances of H_(2)O and CO_(2). The scenarios in which CO originates by a cometary impact and H_(2)O and CO_(2)result from ice grain sublimation can explain both the space telescope and ground-based data for H_(2)O, CO, and CO_(2). Similarly, a steady influx of water, carbon monoxide, and carbon dioxide, and a cometary impact delivering carbon monoxide give rise to abundances matching the observations. The time evolution of HCN also delivered by a cometary impact (as 1% of the CO in mass), when discarding chemical recycling of HCN once it is lost by photolysis and condensation, produces a very low stratospheric abundance which could be likely non-detectable. Consideration of N_(2)-initiated chemistry could represent a source of HCN allowing for a likely observable stratospheric mixing ratio. Conclusions. Our modelling strongly indicates that water in the Uranus atmosphere likely originates from micrometeroid ablation, whereas its cometary origin can be discarded with a very high level of confidence. Also, we cannot firmly constrain the origin of the detected carbon monoxide on Uranus as a cometary impact, ice grain ablation, or a combined source due to both processes can give rise to the atmospheric mixing ratio measured with the Herschel Space Observatory. To establish the origin of oxygen species in the Uranus atmosphere, observations have to allow the retrieval of vertical profiles or H_(2)O, CO, and CO_(2). Measurements in narrow pressure ranges, i.e. basically one pressure level, can be reproduced by different models because it is not possible to break this degeneracy about these three oxygen species in the Uranian atmosphere.
机译:上下文。在这里,我们对天王星大气中潜在的氧气物种来源进行分析。目的我们的目的是解释天王星大气层中H_(2)O,CO和CO_(2)的当前测量值,这将使我们能够限制含氧物种的涌入及其起源。方法。我们使用了时间依赖性的天王星大气光化学模型来确定H_(2)O,CO和CO_(2)的起源。我们彻底研究了彗星撞击传递的物质的演变,以及彗星撞击和微流星体消融产生的稳定氧源的综合来源。结果。我们发现,在450至822年前,撞击范围在〜1.2-3.5 km范围内的撞击器可能已经传送了目前在天王星平流层中看到的CO。根据当前的观察结果,不能排除冰粒消融引起的含氧物质供应。我们的研究还表明,彗星撞击可能不是渲染H_(2)O和CO_(2)丰度的唯一来源。 CO产生于彗星撞击而H_(2)O和CO_(2)来自冰粒升华的情况可以解释H_(2)O,CO和CO_(2)的空间望远镜和地面数据)。类似地,水,一氧化碳和二氧化碳的不断涌入,以及传递一氧化碳的彗星撞击会产生与观测值相符的丰度。 HCN的时间演变也受到彗星撞击的影响(占质量CO的1%),当HCN由于光解和冷凝而丢失时,丢弃化学回收的HCN时,会产生非常低的平流层丰度,这很可能无法检测到。考虑N_(2)引发的化学反应可能代表了HCN的来源,从而可能观察到平流层混合比。结论。我们的模型有力地表明,天王星大气中的水很可能起源于微米级消融,而其彗星起源可以非常高的置信度被丢弃。此外,由于这两个过程都可能导致使用赫歇尔太空天文台测量的大气混合比,因此我们无法牢固地限制所探测到的一氧化碳的起源于天王星,这是彗星撞击,冰粒消融或两者结合的来源。为了确定天王星大气中氧气物种的起源,观测必须允许获取垂直剖面或H_(2)O,CO和CO_(2)。窄压力范围内的测量值,即基本上是一个压力水平,可以用不同的模型进行再现,因为不可能打破在乌拉圭大气层中这三种氧的简并性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号