...
首页> 外文期刊>Astronomy and astrophysics >Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations
【24h】

Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

机译:化学解算器,用于在星前核塌陷计算中计算分子和晶粒的丰度以及非理想的MHD电阻率

获取原文

摘要

We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n _(H) = 10~(12) cm ~(-3) , after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.
机译:我们开发了一个详细的化学网络,可以计算出星前核塌陷的特征条件。我们求解与时间有关的微分方程组,以计算分子和尘埃颗粒的平衡丰度,并由大小仓给出大小分布。这些丰度被用来计算不同的非理想的磁流体动力学电阻率(双极,欧姆和霍尔),这需要进行原星塌陷的模拟。在这种情况下,我们首次考虑了谷物的蒸发,高温下钾,钠和氢的热电离以及化学网络中谷物的热离子发射,并探讨了各种影响。宇宙射线电离率。所有这些过程都会显着影响非理想的磁流体动力学电阻率,从而改变塌陷的动力学。在低密度下,双极扩散和霍尔效应占主导地位,直到n _(H)= 10〜(12)cm〜(-3),然后欧姆扩散才占主导地位。我们发现达到化学平衡所需的时间尺度总是比典型的动力学(自由落体)时间尺度短。这使我们能够在较大的温度,密度和电离速率范围内建立一个大型的多维多物种平衡丰度表。我们在社区中可以使用的这张表在第一次和第二次星前岩心塌陷计算中用于计算非理想的磁流体动力学电阻率,从而对该过程进行了一致的动态化学描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号