...
首页> 外文期刊>Astronomy and astrophysics >The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers - Code description, verification, and computational performance
【24h】

The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers - Code description, verification, and computational performance

机译:具有大雷诺数的天体等离子体的3D MHD代码GOEMHD3-代码说明,验证和计算性能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims. Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods. The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results. The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very efficiently with the number of processors up to tens of thousands of CPU cores. This excellent scalability of the code was obtained by simulating the 3D evolution of the solar corona above an active region (NOAA AR1249) for which GOEMHD3 revealed the energy distribution in the solar atmosphere in response to the energy influx from the chromosphere through the transition region, taking into account the weak Joule current dissipation and viscosity in the almost dissipationless solar corona. Conclusions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal astrophysical plasma flows with large Reynolds numbers well resolved and on huge grids covering large domains. Its abilities are verified by comprehensive set of tests of ideal and weakly dissipative plasma phenomena. The high-resolution (20483 grid?points) simulation of a large part of the solar corona above an observed active region proves the excellent parallel scalability of the code up to more than 30?000 processor cores.
机译:上下文。雷诺数大的近乎理想的天体等离子体中的湍流和流动的数值模拟激励了低电阻率的磁流体力学(MHD)计算机代码的实现。它们需要具有较高的计算效率,并具有大量CPU内核才能很好地扩展,允许在大型仿真域上获得较高的网格分辨率,并易于模块化扩展,例如适应新的初始条件和边界条件。目的我们的目标是对具有较大雷诺数的三维天体等离子体动力学(3D)进行数值研究,以计算效率高,可扩展性强且易于扩展的低耗散MHD仿真代码的实施,优化和验证。方法。新的GOEMHD3代码使用快速高效的跳变方案离散了MHD方程的理想部分,该方案在空间和时间上均为二阶精度,并且可以轻松修改其初始条件和边界条件。为了研究扩散过程和耗散过程,通过DuFort-Frankel方案离散化了相应的术语。为了始终满足Courant-Friedrichs-Lewy稳定性标准,可以动态调整代码的时间步长。数值引起的局部振荡被明确的,外部控制的扩散项所抑制。实现了非等距网格,可以在需要时提高空间分辨率。 GOEMHD3基于混合的MPI-OpenMP编程范例进行并行化,采用标准的二维域分解方法。结果。方程求解器的理想部分是通过对众所周知的Kelvin-Helmholtz不稳定性和Orszag-Tang涡的演化进行数值测试来验证的。通过模拟圆柱电流柱的衰减来测试求解(电阻)感应方程的准确性。此外,我们表明,随着处理器数量增加到成千上万个CPU内核,代码的计算性能非常有效地扩展。通过模拟活动区域(NOAA AR1249)上方太阳日冕的3D演化,获得了代码的出色可伸缩性,针对该区域,GOEMHD3响应从色球层穿过过渡区域的能量流入,揭示了太阳大气中的能量分布,考虑到几乎无耗散的日冕中的弱焦耳电流耗散和粘度。结论。新的大规模并行仿真代码GOEMHD3可以高效,快速地模拟几乎理想的天体物理等离子体流,并具有良好解析的大雷诺数,并且可以覆盖大范围的巨大网格。它的功能已通过对理想和弱耗散等离子体现象的全面测试来验证。高分辨率的(20483格点)模拟了所观察到的活动区域上方的大部分日冕,证明了该代码具有出色的并行可扩展性,最多可支持30 000个处理器核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号