...
首页> 外文期刊>Astronomy and astrophysics >Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes
【24h】

Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes

机译:用于天文成像的高效解卷积方法:算法和IDL-GPU代码

获取原文
           

摘要

Context. The Richardson-Lucy method is the most popular deconvolution method in astronomy because it preserves the number of counts and the non-negativity of the original object. Regularization is, in general, obtained by an early stopping of Richardson-Lucy iterations. In the case of point-wise objects such as binaries or open star clusters, iterations can be pushed to convergence. However, it is well-known that Richardson-Lucy is an inefficient method. In most cases and, in particular, for low noise levels, acceptable solutions are obtained at the cost of hundreds or thousands of iterations, thus several approaches to accelerating Richardson-Lucy have been proposed. They are mainly based on Richardson-Lucy being a scaled gradient method for the minimization of the Kullback-Leibler divergence, or Csiszár I-divergence, which represents the data-fidelity function in the case of Poisson noise. In this framework, a line search along the descent direction is considered for reducing the number of iterations. Aims. A general optimization method, referred to as the scaled gradient projection method, has been proposed for the constrained minimization of continuously differentiable convex functions. It is applicable to the non-negative minimization of the Kullback-Leibler divergence. If the scaling suggested by Richardson-Lucy is used in this method, then it provides a considerable increase in the efficiency of Richardson-Lucy. Therefore the aim of this paper is to apply the scaled gradient projection method to a number of imaging problems in astronomy such as single image deconvolution, multiple image deconvolution, and boundary effect correction. Methods. Deconvolution methods are proposed by applying the scaled gradient projection method to the minimization of the Kullback-Leibler divergence for the imaging problems mentioned above and the corresponding algorithms are derived and implemented in interactive data language. For all the algorithms, several stopping rules are introduced, including one based on a recently proposed discrepancy principle for Poisson data. To attempt to achieve a further increase in efficiency, we also consider an implementation on graphic processing units. Results. The proposed algorithms are tested on simulated images. The acceleration of scaled gradient projection methods achieved with respect to the corresponding Richardson-Lucy methods strongly depends on both the problem and the specific object to be reconstructed, and in our simulations the improvement achieved ranges from about a factor of 4 to more than 30. Moreover, significant accelerations of up to two orders of magnitude have been observed between the serial and parallel implementations of the algorithms. The codes are available upon request.
机译:上下文。理查森-露西方法是天文学中最流行的反卷积方法,因为它保留了原始对象的计数数量和非负性。通常,通过提前停止Richardson-Lucy迭代获得正则化。对于二进制或开放星团之类的逐点对象,可以将迭代推向收敛。但是,众所周知,理查森-露西是一种低效的方法。在大多数情况下,尤其是对于低噪声水平,以数百次或数千次迭代为代价获得了可接受的解决方案,因此提出了几种加速Richardson-Lucy的方法。它们主要基于Richardson-Lucy,Richardson-Lucy是用于最小化Kullback-Leibler散度或CsiszárI散度的比例梯度方法,代表Poisson噪声情况下的数据保真度函数。在此框架中,考虑沿下降方向进行线搜索以减少迭代次数。目的对于连续可微凸函数的约束最小化,提出了一种通用的优化方法,称为缩放梯度投影法。它适用于Kullback-Leibler散度的非负最小化。如果在此方法中使用Richardson-Lucy建议的缩放比例,则可以大大提高Richardson-Lucy的效率。因此,本文的目的是将比例梯度投影方法应用于天文学中的许多成像问题,例如单图像反卷积,多图像反卷积和边界效应校正。方法。针对上述成像问题,通过将比例梯度投影方法应用于最小化Kullback-Leibler散度,提出了反卷积方法,并以交互式数据语言推导并实现了相应的算法。对于所有算法,都引入了几种停止规则,其中一种基于最近提出的Poisson数据差异原理。为了尝试进一步提高效率,我们还考虑在图形处理单元上实施。结果。所提出的算法在模拟图像上进行了测试。相对于相应的Richardson-Lucy方法而言,缩放梯度投影方法的加速很大程度上取决于问题和待重建的特定对象,在我们的仿真中,所实现的改进范围约为4到30倍以上。此外,在算法的串行和并行实现之间已观察到高达两个数量级的显着加速。可根据要求提供代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号