...
首页> 外文期刊>Astronomy and astrophysics >p, He, and C to Fe cosmic-ray primary fluxes in diffusion models - Source and transport signatures on fluxes and ratios
【24h】

p, He, and C to Fe cosmic-ray primary fluxes in diffusion models - Source and transport signatures on fluxes and ratios

机译:扩散模型中的p,He和C到Fe的宇宙射线一次通量-通量和比率的来源和传输特征

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The source spectrum of cosmic rays is not well determined by diffusive shock acceleration models. The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up?to?Fe) are a means to indirectly access?it. But how robust are the constraints, and how degenerate are the source and transport parameters? Aims. We check the compatibility of the primary fluxes with the transport parameters derived from the B/C?analysis, but also ask whether they add further constraints. We study whether the spectral shapes of these fluxes and their ratios are mostly driven by source or propagation effects. We then derive the source parameters (slope, abundance, and low-energy shape). Methods. Simple analytical formulae are used to address the issue of degeneracies between source/transport parameters, and to understand the shape of the p/He and C/O to Fe/O?data. The full analysis relies on the USINE propagation package, the MINUIT minimisation routines (χ2?analysis) and a Markov?Chain Monte?Carlo (MCMC) technique. Results. Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below??~1?TeV. Fits to the primary fluxes alone do not provide physical constraints on the transport parameters. If?we leave the source spectrum free, parametrised by the form dQ/dE?=?qβηS??α, and fix the diffusion coefficient K(R)?=?K0βηT?δ so as to reproduce the B/C?ratio, the?MCMC?analysis constrains the source spectral index?α to be in the range 2.2?2.5 for all primary species up to?Fe, regardless of the value of the diffusion slope?δ. The values of the parameter?ηS describing the low-energy shape of the source spectrum are degenerate with the parameter?ηT describing the low-energy shape of the diffusion coefficient: we find ηS???ηT?≈?0 for?p and He?data, but ηS???ηT?≈?1 for?C to Fe?primary species. This is consistent with the toy-model calculation in which the shape of the p/He and C/O to Fe/O?data is reproduced if ηS???ηT?≈?0?1 (no?need for different slopes?α). When plotted as a function of the kinetic energy per nucleon, the low-energy p/He?ratio is determined mostly by the modulation effect, whereas primary/O?ratios are mostly determined by their destruction?rate. Conclusions. Models based on fitting B/C are compatible with primary fluxes. The different spectral indices for the propagated primary fluxes up to a?few?TeV can be naturally ascribed to transport effects only, implying universality of elemental source spectra.
机译:上下文。宇宙射线的源光谱不能通过扩散冲击加速度模型很好地确定。质子,氦气和较重的主要宇宙射线物质(高达Fe)的传播通量是间接获取它的一种手段。但是约束的鲁棒性如何,源和传输参数的退化程度如何?目的我们检查一次通量与通过B / C分析得出的传输参数的兼容性,但同时询问它们是否增加了进一步的约束。我们研究了这些通量的频谱形状及其比率是否主要受源或传播效应驱动。然后,我们导出源参数(坡度,丰度和低能形状)。方法。简单的分析公式可用于解决源/传输参数之间的简并性问题,并了解p / He和C / O到Fe / O?数据的形状。完整的分析依赖于USINE传播程序包,MINUIT最小化例程(χ2分析)和Markov?Chain Monte?Carlo(MCMC)技术。结果。质子数据在幂律源谱和纯扩散定义的最简单模型中得到了很好的描述。它们也可以由具有例如对流和/或重新加速的模型来容纳。无需中断源光谱指数≤Δθ〜1ΔTeV/ n。仅适合一次通量并不能对传输参数提供物理约束。如果?我们将源光谱自由化,其参数形式为dQ / dE?=?qβηS?α,并固定扩散系数K(R)?=?K0βηT?δ,以再现B / C比, MCMC分析将源光谱指数αα限制在所有直至Fe的原始物种的2.2≤2.5范围内,而与扩散斜率δδ的值无关。描述源谱的低能量形状的参数?ηS的值退化,而描述扩散系数的低能量形状的参数?ηT的值退化:对于?p,我们发现ηS???ηT?≈?0他得到数据,但对于Fe的原始物种来说,ηSηηT≈≈1。这与玩具模型计算是一致的,在玩具模型计算中,如果ηS≤ηT≤≈0≤1,则再现p / He和C / O对Fe / O2数据的形状(不需要为不同的斜率? α)。当绘制为每个核子动能的函数时,低能p / He比主要由调制效应决定,而一次//比主要由其破坏率决定。结论。基于拟合B / C的模型与一次通量兼容。自然而然地,传播的一次通量的不同光谱指数高达几个TeV / n只能归因于传输效应,这意味着元素源光谱具有普遍性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号