首页> 外文期刊>Astronomy and astrophysics >The baroclinic instability in the context of layered accretion - Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks
【24h】

The baroclinic instability in the context of layered accretion - Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks

机译:层积增加中的斜压不稳定性-自持涡旋及其在原行星盘局部可压缩非分层模型中的磁稳定性

获取原文
           

摘要

Context. Turbulence and angular momentum transport in accretion disks remains a topic of debate. With the realization that dead zones are robust features of protoplanetary disks, the search for hydrodynamical sources of turbulence continues. A possible source is the baroclinic instability (BI), which has been shown to exist in unmagnetized non-barotropic disks. Aims. We aim to verify the existence of the baroclinic instability in 3D magnetized disks, as well as its interplay with other instabilities, namely the magneto-rotational instability (MRI) and the magneto-elliptical instability. Methods. We performed local simulations of non-isothermal accretion disks with the Pencil Code. The entropy gradient that generates the baroclinic instability is linearized and included in the momentum and energy equations in the shearing box approximation. The model is compressible, so excitation of spiral density waves is allowed and angular momentum transport can be measured. Results. We find that the vortices generated and sustained by the baroclinic instability in the purely hydrodynamical regime do not survive when magnetic fields are included. The MRI by far supersedes the BI in growth rate and strength at saturation. The resulting turbulence is virtually identical to an MRI-only scenario. We measured the intrinsic vorticity profile of the vortex, finding little radial variation in the vortex core. Nevertheless, the core is disrupted by an MHD instability, which we identify with the magneto-elliptic instability. This instability has nearly the same range of unstable wavelengths as the MRI, but has higher growth rates. In fact, we identify the MRI as a limiting case of the magneto-elliptic instability, when the vortex aspect ratio tends to infinity (pure shear flow). We isolated its effect on the vortex, finding that a strong but unstable vertical magnetic field leads to channel flows inside the vortex, which stretch it apart. When the field is decreased or resistivity is used, we find that the vortex survives until the MRI develops in the box. The vortex is then destroyed by the strain of the surrounding turbulence. Constant azimuthal fields and zero net flux fields also lead to vortex destruction. Resistivity quenches both instabilities when the magnetic Reynolds number of the longest vertical wavelength of the box is near unity. Conclusions. We conclude that vortex excitation and self-sustenance by the baroclinic instability in protoplanetary disks is viable only in low ionization, i.e., the dead zone. Our results are thus in accordance with the layered accretion paradigm. A baroclinicly unstable dead zone should be characterized by the presence of large-scale vortices whose cores are elliptically unstable, yet sustained by the baroclinic feedback. Since magnetic fields destroy the vortices and the MRI outweighs the BI, the active layers are unmodified.
机译:上下文。吸积盘中的湍流和角动量传输仍然是争论的话题。随着认识到死区是原行星盘的强大特征,继续寻找湍流的流体动力源。可能的原因是斜压不稳定性(BI),已证明它存在于未磁化的非正压磁盘中。目的我们旨在验证3D磁化磁盘中斜压不稳定性的存在,以及它与其他不稳定性(即磁旋转不稳定性(MRI)和磁椭圆不稳定性)之间的相互作用。方法。我们用铅笔代码对非等温吸积盘进行了局部模拟。产生斜压不稳定性的熵梯度被线性化,并包括在剪切盒近似中的动量和能量方程中。该模型是可压缩的,因此可以激励螺旋密度波,并且可以测量角动量传输。结果。我们发现,当包括磁场在内时,纯流体动力学机制中的斜压不稳定所产生和维持的涡流无法幸存。 MRI远远超过了BI的增长速度和饱和时的强度。产生的湍流实际上与仅MRI情况相同。我们测量了旋涡的固有旋涡分布,发现旋涡核心几乎没有径向变化。然而,磁心被MHD不稳定性所破坏,我们将其确定为磁-椭圆不稳定性。这种不稳定性具有与MRI几乎相同的不稳定波长范围,但是具有更高的增长率。实际上,当涡旋纵横比趋于无穷大(纯剪切流)时,我们将MRI视为磁-椭圆形不稳定性的极限情况。我们隔离了其对涡流的影响,发现强而不稳定的垂直磁场会导致涡流内部的通道流动,从而将涡流拉开。当磁场减小或使用电阻率时,我们发现涡旋得以幸存,直到磁共振成像在盒子中发展为止。然后,涡旋被周围湍流的破坏所破坏。恒定的方位角场和零净通量场也导致涡旋破坏。当盒子最长垂直波长的雷诺数接近于1时,电阻率可消除两种不稳定性。结论。我们得出的结论是,仅在低电离即死区中,原行星盘中斜压不稳定所产生的涡旋激发和自我维持才是可行的。因此,我们的结果与分层吸积范例一致。斜压不稳定的死区应该以大涡旋的存在为特征,其核心是椭圆形的不稳定,但仍受斜压反馈的支持。由于磁场会破坏旋涡,而MRI则要超过BI,因此有源层不会发生变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号