首页> 外文期刊>Applied Microbiology >Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea
【24h】

Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea

机译:甲烷产古细菌电子传输链中等势隧穿的生理证据

获取原文
获取外文期刊封面目录资料

摘要

Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh.IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale.
机译:许多(但不是全部)生物使用醌来保存电子传输链中的能量。发酵细菌和产甲烷的古细菌(甲烷)不产生醌,但已设计出其他产生ATP的方法。甲氧吩嗪(MPh)是在甲烷八叠球菌(Methanosarcina)物种中发现的一种独特的膜电子载体,在电子传输链中的作用与醌相同。为了扩展醌和MPh之间的类比,我们比较了两种经过充分研究的甲烷菌(Methanosarcina acetivorans C2A和Methanosarcina barkeri Fusaro)之间的MPh库大小与细菌大肠杆菌中的醌库大小。我们发现,随着培养物从指数生长过渡到固定相,每个细胞中MPh的数量增加,而乙酸巴比莫氏菌中MPh的绝对量比巴克莫里氏菌高3倍。 MPh的浓度表明,乙酰丙酮酸莫雷氏菌的细胞膜而不是巴克莫里氏菌的细胞膜被电定量,就好像它是单个导电金属薄板并且对于电子传输的速率接近最佳。同样,静止的(但不是指数增长的)大肠杆菌细胞也具有基于醌含量的电量化膜。与我们的假设相符,我们证明了外源添加吩嗪可以使巴克莫氏菌的生长速率比乙酰丙酮莫氏菌的生长速率快三倍。我们的工作表明,醋巴比莫氏菌中通过MPh的电子通量自然要比巴克莫里氏菌高,并且氢循环在节省能量方面不如使用MPh的标量质子移位。优化和操纵细胞代谢效率的能力是商业上可行和不可行的可再生技术之间的区别。从产甲烷的古细菌(甲烷)中可以学到很多东西,而古细菌在极端的热力学约束下发展出成功的代谢生活方式。产甲烷菌使用高效的电子传输系统和超分子配合物来优化电子和碳流量,以控制生物质的合成和甲烷的产生。在世界范围内,产甲烷菌被用于产生可再生甲烷,用于热,电和运输。我们的观察结果表明,乙草甲烷单胞菌(Methanosarcina acetivorans)具有电定量膜,而巴氏甲烷单胞菌(Methanosarcina barkeri)没有。大肠杆菌是兼性厌氧菌的典范,在固定期具有最佳的电子传输,但在指数生长期没有。该研究还表明,使用外源提供的亲脂性电子载体可以提高细菌和古细菌的代谢效率。通过甲氧吩嗪提高产甲烷原电子的运输能力有可能在工业规模上增加可再生甲烷的生产。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号