首页> 外文期刊>Applied Microbiology >Genomic Plasticity Enables a Secondary Electron Transport Pathway in Shewanella oneidensis
【24h】

Genomic Plasticity Enables a Secondary Electron Transport Pathway in Shewanella oneidensis

机译:基因组可塑性使希瓦氏菌中的次级电子传输途径成为可能。

获取原文
       

摘要

Microbial dissimilatory iron reduction is an important biogeochemical process. It is physiologically challenging because iron occurs in soils and sediments in the form of insoluble minerals such as hematite or ferrihydrite. Shewanella oneidensis MR-1 evolved an extended respiratory chain to the cell surface to reduce iron minerals. Interestingly, the organism evolved a similar strategy for reduction of dimethyl sulfoxide (DMSO), which is reduced at the cell surface as well. It has already been established that electron transfer through the outer membrane is accomplished via a complex in which β-barrel proteins enable interprotein electron transfer between periplasmic oxidoreductases and cell surface-localized terminal reductases. MtrB is the β-barrel protein that is necessary for dissimilatory iron reduction. It forms a complex together with the periplasmic decaheme c -type cytochrome MtrA and the outer membrane decaheme c -type cytochrome MtrC. Consequently, mtrB deletion mutants are unable to reduce ferric iron. The data presented here show that this inability can be overcome by a mobile genomic element with the ability to activate the expression of downstream genes and which is inserted within the SO4362 gene of the SO4362-to-SO4357 gene cluster. This cluster carries genes similar to mtrA and mtrB and encoding a putative cell surface DMSO reductase. Expression of SO4359 and SO4360 alone was sufficient to complement not only an mtrB mutant under ferric citrate-reducing conditions but also a mutant that furthermore lacks any outer membrane cytochromes. Hence, the putative complex formed by the SO4359 and SO4360 gene products is capable not only of membrane-spanning electron transfer but also of reducing extracellular electron acceptors.
机译:微生物异化铁还原是重要的生物地球化学过程。由于铁以不溶性矿物(如赤铁矿或三水铁矿)的形式存在于土壤和沉积物中,因此具有生理挑战性。 Shewanella oneidensis MR-1在细胞表面形成了一条延长的呼吸链,以减少铁矿物质。有趣的是,该生物体进化出了一种类似的还原二甲基亚砜(DMSO)的策略,该二甲基亚砜在细胞表面也被还原。已经确定通过复合物完成通过外膜的电子转移,其中β-桶状蛋白使周质氧化还原酶和细胞表面定位的末端还原酶之间的蛋白间电子转移成为可能。 MtrB是异化铁还原所必需的β桶蛋白。它与周质十聚体c型细胞色素MtrA和外膜十聚体c型细胞色素MtrC一起形成复合物。因此,mtrB缺失突变体无法还原三价铁。此处提供的数据表明,可以通过具有激活下游基因表达能力并将其插入SO4362-to-SO4357基因簇的SO4362基因中的移动基因组元件来克服这种缺陷。该簇携带类似于mtrA和mtrB的基因,并编码假定的细胞表面DMSO还原酶。单独表达SO4359和SO4360不仅足以补充柠檬酸铁还原条件下的mtrB突变体,而且足以补充缺乏任何外膜细胞色素的突变体。因此,由SO4359和SO4360基因产物形成的推定复合物不仅能够跨膜电子转移,而且能够还原细胞外电子受体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号