首页> 外文期刊>Applied Microbiology >Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium
【24h】

Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium

机译:将CRISPR-Cas9技术从基因组编辑扩展到梭菌属的转录工程中

获取原文
       

摘要

The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genus Clostridium has lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied the Streptococcus pyogenes type II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing in Clostridium acetobutylicum DSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression in C. acetobutylicum . Subsequently, we targeted the carbon catabolite repression (CCR) system of C. acetobutylicum through transcriptional repression of the hprK gene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated in Clostridium pasteurianum ATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes.IMPORTANCE After recognizing the industrial potential of Clostridium for decades, methods for the genetic manipulation of these anaerobic bacteria are still underdeveloped. This study reports the implementation of CRISPR-Cas technology for genome editing and transcriptional regulation in Clostridium acetobutylicum , which is arguably the most common industrial clostridial strain. The developed genetic tools enable simpler, more reliable, and more extensive derivation of C. acetobutylicum mutant strains for industrial purposes. Similar approaches were also demonstrated in Clostridium pasteurianum , another clostridial strain that is capable of utilizing glycerol as the carbon source for butanol fermentation, and therefore can be arguably applied in other clostridial strains.
机译:基于簇状规则间隔的短回文重复序列(CRISPR)和CRISPR相关(Cas)蛋白的原核适应性免疫系统的发现和开发彻底改变了基因工程。 CRISPR-Cas工具已实现了广泛的基因组编辑以及多种生物体中转录程序的有效调节。梭状芽胞杆菌属的基因工程工具的开发进展落后于许多其他原核生物,这为CRISPR-Cas技术提供了解决长期存在的问题的机会。在这里,我们应用化脓性链球菌II型CRISPR-Cas9(SpCRISPR-Cas9)系统在丙酮丁醇梭菌DSM792中进行基因组编辑。我们进一步探索了SpCRISPR-Cas9机器对基因特异性转录抑制的实用性。为了进行概念验证,将质粒编码的荧光蛋白基因用于丙酮丁醇梭菌的转录抑制。随后,我们通过编码HPr激酶/磷酸化酶的hprK基因的转录抑制,靶向丙酮丁醇梭菌的碳分解代谢阻遏(CCR)系统,从而导致了葡萄糖和木糖的共同利用,这是木质纤维素原料的两个丰富碳源。在巴斯德梭状芽胞杆菌ATCC 6013中也证明了基于SpCRISPR-Cas9进行基因组编辑和转录抑制的类似方法。因此,这项工作为衍生用于工业目的的梭菌菌株奠定了基础。重要意义认识到梭状芽孢杆菌数十年的工业潜力之后,用于这些厌氧细菌的基因操作的方法仍不发达。这项研究报告了CRISPR-Cas技术在丙酮丁醇梭菌中的基因组编辑和转录调控的实施,这可以说是最常见的工业梭菌菌株。发达的遗传工具可以更简单,更可靠,更广泛地衍生出丙酮丁醇梭菌突变株,以用于工业目的。在另一种梭菌菌株巴斯德梭状芽胞杆菌中也证明了类似的方法,该菌株能够利用甘油作为丁醇发酵的碳源,因此可以说可用于其他梭菌菌株。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号