...
首页> 外文期刊>Astronomy and astrophysics >Solar winds along curved magnetic field lines
【24h】

Solar winds along curved magnetic field lines

机译:太阳风沿着弯曲的磁力线

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Both remote-sensing measurements using the interplanetary scintillation (IPS) technique and in-situ measurements by the Ulysses spacecraft show a bimodal structure for the solar wind at solar minimum conditions. At present it still remains to address why the fast wind is fast and the slow wind is slow. While a robust empirical correlation exists between the coronal expansion rate fc of the flow tubes and the speeds v measured in?situ, a more detailed data analysis suggests that v depends on more than just fc. Aims. We examine whether the non-radial shape of field lines, which naturally accompanies any non-radial expansion, could be an additional geometrical factor. Methods. We solved the transport equations incorporating the heating from turbulent Alfvén waves for an electron-proton solar wind along curved field lines given by an analytical magnetic field model, which is representative of a solar minimum corona. Results. The field line shape is found to influence the solar wind parameters substantially, reducing the asymptotic speed by up to ~130?km???s-1? or by ~28% in relative terms, compared with the case where the field line curvature is neglected. This effect was interpreted in the general framework of energy addition in the solar wind: compared to the straight case, the field line curvature enhances the effective energy deposition to the subsonic flow, which results in a higher proton flux and a lower terminal proton speed. Conclusions. Our computations suggest that the field line curvature could be a geometrical factor which, in addition to the tube expansion, substantially influences the solar wind speed. Furthermore, although the field line curvature is unlikely to affect the polar fast solar wind at solar minima, it does help make the wind at low latitudes slow, which in turn helps better reproduce the Ulysses measurements.
机译:上下文。使用星际闪烁(IPS)技术进行的遥感测量和通过Ulysses航天器进行的原位测量均显示了在太阳最低条件下太阳风的双峰结构。目前,仍然需要解决为什么快风快而慢风慢的原因。尽管流量管的日冕膨胀率fc与现场测量的速度v之间存在稳固的经验相关性,但更详细的数据分析表明v不仅取决于fc。目的我们检查自然而然地伴随着任何非径向扩展的场线的非径向形状是否可以作为附加的几何因素。方法。我们通过分析磁场模型给出的弯曲磁场线,解决了结合湍流Alfvén波加热的电子质子太阳风沿热场传递的传输方程,该模型代表了太阳最小电晕。结果。发现场线的形状对太阳风参数有很大影响,使渐近速度降低了约130?km?s-1?。与忽略场线曲率的情况相比,相对而言约为28%。这种影响在太阳风中能量添加的一般框架中得到了解释:与直线形情况相比,场线曲率增强了亚音速流的有效能量沉积,从而导致更高的质子通量和更低的最终质子速度。结论。我们的计算表明,场线曲率可能是一个几何因素,除了管子膨胀外,它还大大影响了太阳风速。此外,尽管场线曲率不太可能在太阳极小时影响极地快速太阳风,但它确实有助于使低纬度的风变慢,进而有助于更好地再现尤利西斯的测量结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号