首页> 外文期刊>Applied Microbiology >A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization
【24h】

A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization

机译:蛋白质假单胞菌Pf-5中的循环代谢网络优先考虑Enter-Doudoroff途径并在碳水化合物联合利用过程中展示了基质层次

获取原文
           

摘要

The genetic characterization of Pseudomonas protegens Pf-5 was recently completed. However, the inferred metabolic network structure has not yet been evaluated experimentally. Here, we employed ~(13)C-tracers and quantitative flux analysis to investigate the intracellular network for carbohydrate metabolism. In lieu of the direct phosphorylation of glucose by glucose kinase, glucose catabolism was characterized primarily by the oxidation of glucose to gluconate and 2-ketogluconate before the phosphorylation of these metabolites to feed the Entner-Doudoroff (ED) pathway. In the absence of phosphofructokinase activity, a cyclic flux from the ED pathway to the upper Embden-Meyerhof-Parnas (EMP) pathway was responsible for routing glucose-derived carbons to the non-oxidative pentose phosphate (PP) pathway. Consistent with the lack of annotated genes in P. protegens Pf-5 for the transport or initial catabolism of pentoses and galactose, only glucose was assimilated into intracellular metabolites in the presence of xylose, arabinose, or galactose. However, when glucose was fed simultaneously with fructose or mannose, co-uptake of these hexoses was evident, but glucose was preferred over fructose (3 to 1) and over mannose (4 to 1). Despite gene annotation of mannose catabolism to fructose-6-phosphate, metabolite labeling patterns revealed that mannose was assimilated into fructose-1,6-bisphosphate, similarly to fructose catabolism. Remarkably, carbons from mannose and fructose were also found to cycle backward through the upper EMP pathway toward the ED pathway. Therefore, the operational metabolic network for processing carbohydrates in P. protegens Pf-5 prioritizes flux through the ED pathway to channel carbons to EMP, PP, and downstream pathways.IMPORTANCE Species of the Pseudomonas genus thrive in various nutritional environments and have strong biocatalytic potential due to their diverse metabolic capabilities. Carbohydrate substrates are ubiquitous both in environmental matrices and in feedstocks for engineered bioconversion. Here, we investigated the metabolic network for carbohydrate metabolism in Pseudomonas protegens Pf-5. Metabolic flux quantitation revealed the relative involvement of different catabolic routes in channeling carbohydrate carbons through a cyclic metabolic network. We also uncovered that mannose catabolism was similar to fructose catabolism, despite the annotation of a different pathway in the genome. Elucidation of the constitutive metabolic network in P. protegens is important for understanding its innate carbohydrate processing, thus laying the foundation for targeting metabolic engineering of this untapped Pseudomonas species. KEYWORDS: Pseudomonas , carbohydrate co-utilization, hexose sugar, metabolic flux analysis, metabolomicsINTRODUCTIONSpecies of the genus Pseudomonas , which are ubiquitous in the environment, are metabolically diverse and often touted for industrial bioproduction (1). The elucidation of the cellular network of carbon fluxes through metabolic pathways of these bacterial species is critical both to understand their role in carbon processing in environmental matrices and to engineer these species to optimize their use in agriculture, industry, and medicine. Gaining importance in bioremediation, Pseudomonas protegens Pf-5 was identified to produce enzymes that degrade polyurethane, a plastic polymer (2). Furthermore, P. protegens Pf-5 is also known to synthesize and release several antimicrobials and exoenzymes that are toxic to plant pathogens (3,–6). Recently, P. protegens Pf-5 was characterized and annotated at the genomic level (7). However, the metabolic network of P. protegens Pf-5 has only been inferred from the genome annotation and has not yet been investigated experimentally.Given the importance and ubiquity of carbohydrate-containing feedstocks, we sought to unravel the metabolic network structure for carbohydrate metabolism in P. protegens Pf-5 by combining ~(13)C-assisted cellular carbon mapping with ~(13)C metabolic flux analysis (MFA). Previous studies on other Pseudomonas species (i.e., P. putida and P. fluorescens ) focused on elucidating the metabolic fluxes during growth on glucose, a prototypical carbohydrate substrate (8,–11). In a similar fashion, we also studied the innate carbohydrate metabolism in P. protegens Pf-5 during feeding on glucose alone. However, carbon feedstocks are typically composed of other carbohydrates in addition to glucose. Therefore, we also investigated carbon assimilation and fluxes when the P. protegens Pf-5 cells were fed on mixtures of glucose with other hexoses (mannose, fructose, and galactose) or pentoses (xylose and arabinose).Previous reports showed that P. protegens strains were able to grow on glucose, mannose, or fructose as a single carbon source but not on galactose, xylose, or arabinose (6). In the genome of P. protegens Pf-5, genes for the following transporters were found: a phosphoenolpyruvate (PEP)/
机译:假单胞菌蛋白Pf-5的遗传表征最近完成。但是,推断的代谢网络结构尚未进行实验评估。在这里,我们使用〜(13)C示踪剂和定量通量分析来研究碳水化合物代谢的细胞内网络。代替葡萄糖激酶通过葡萄糖的直接磷酸化,葡萄糖分解代谢的主要特征是在这些代谢物磷酸化以提供Entner-Doudoroff(ED)途径之前,将葡萄糖氧化为葡萄糖酸和2-酮葡萄糖酸。在缺乏磷酸果糖激酶活性的情况下,从ED途径到上层Embden-Meyerhof-Parnas(EMP)途径的循环通量负责将葡萄糖衍生的碳路由到非氧化性戊糖磷酸(PP)途径。与P.protegens Pf-5中缺少注释的基因来传递或最初分解戊糖和半乳糖的现象一致,只有葡萄糖在木糖,阿拉伯糖或半乳糖存在的情况下被同化为细胞内代谢产物。然而,当葡萄糖与果糖或甘露糖同时喂养时,这些己糖的共同摄取是明显的,但是葡萄糖比果糖(3:1)和甘露糖(4:1)更可取。尽管基因注释了甘露糖分解代谢为6-磷酸果糖,但代谢物标记模式显示,与果糖分解代谢相似,甘露糖被同化为1,6-双磷酸果糖。值得注意的是,还发现甘露糖和果糖中的碳通过上部EMP途径向ED途径向后循环。因此,用于处理蛋白质假单胞菌Pf-5的碳水化合物的可操作代谢网络优先考虑通过ED途径的通量,以将碳引导至EMP,PP和下游途径。由于它们具有不同的代谢能力。碳水化合物底物在环境基质和工程生物转化的原料中无处不在。在这里,我们调查了蛋白质假单胞菌Pf-5中碳水化合物代谢的代谢网络。代谢通量定量揭示了不同的分解代谢途径在通过循环代谢网络引导碳水化合物碳中的相对参与。我们还发现,尽管注释了基因组中不同的途径,但甘露糖的分解代谢与果糖的分解代谢相似。蛋白质体育中的组成性代谢网络的阐明对于理解其先天的碳水化合物加工非常重要,从而为靶向该未开发的假单胞菌物种的代谢工程奠定了基础。关键词:假单胞菌,碳水化合物共利用,己糖,代谢通量分析,代谢组学简介假单胞菌属的种在环境中普遍存在,在代谢上是多样的,并且经常被吹捧为工业生物生产(1)。通过这些细菌物种的代谢途径阐明碳通量的细胞网络,对于理解它们在环境基质中碳加工中的作用以及对这些物种进行改造以优化其在农业,工业和医学中的用途都是至关重要的。在生物修复中越来越重要的是,鉴定出假单胞菌蛋白Pf-5可以产生降解聚氨酯(一种塑料聚合物)的酶(2)。此外,众所周知,P。protegens Pf-5可以合成并释放出几种对植物病原体有毒的抗微生物剂和外切酶(3,-6)。最近,蛋白质假单胞菌Pf-5在基因组水平上得到了表征和注释(7)。然而,仅从基因组注释中推断出P.protegens Pf-5的代谢网络,并且尚未进行实验研究。鉴于含碳水化合物的原料的重要性和普遍性,我们试图揭示碳水化合物代谢的代谢网络结构通过将〜(13)C辅助细胞碳定位与〜(13)C代谢通量分析(MFA)相结合,可以在P. protegens Pf-5中获得蛋白质。先前对其他假单胞菌物种(即恶臭假单胞菌和荧光假单胞菌)的研究集中于阐明在葡萄糖(一种典型的碳水化合物底物)上的生长过程中的代谢通量(8,–11)。以类似的方式,我们还研究了仅以葡萄糖为食期间蛋白质假单胞菌Pf-5中固有的碳水化合物代谢。但是,碳原料通常除葡萄糖外还由其他碳水化合物组成。因此,我们还研究了蛋白质假单胞菌Pf-5细胞以葡萄糖与其他己糖(甘露糖,果糖和半乳糖)或戊糖(木糖和阿拉伯糖)的混合物喂养时的碳同化作用和通量。以前的研究表明,蛋白质假单胞菌菌株能够在葡萄糖,甘露糖或果糖上作为单一碳源生长,但不能在半乳糖,木糖或阿拉伯糖上生长(6)。在P.protegens Pf-5的基因组中,发现了以下转运蛋白的基因:磷酸烯醇丙酮酸(PEP)/

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号